Changes of Subseasonal Variability Associated with El Niño

Gilbert P. Compo NOAA–CIRES Climate Diagnostics Center, University of Colorado, Boulder, Colorado

Search for other papers by Gilbert P. Compo in
Current site
Google Scholar
PubMed
Close
,
Prashant D. Sardeshmukh NOAA–CIRES Climate Diagnostics Center, University of Colorado, Boulder, Colorado

Search for other papers by Prashant D. Sardeshmukh in
Current site
Google Scholar
PubMed
Close
, and
Cécile Penland NOAA–CIRES Climate Diagnostics Center, University of Colorado, Boulder, Colorado

Search for other papers by Cécile Penland in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper is concerned with assessing the impact of the El Niño–Southern Oscillation (ENSO) on atmospheric variability on synoptic, intraseasonal, monthly, and seasonal timescales. Global reanalysis data as well as atmospheric general circulation model (AGCM) simulations are used for this purpose. For the observational analysis, 53 yr of NCEP reanalyses are stratified into El Niño, La Niña, and neutral winters [Jan–Feb–Mar (JFM)]. The AGCM analysis is based on three sets of 180 seasonal integrations made with prescribed global sea surface temperatures corresponding to an observed El Niño event (JFM 1987), an observed La Niña event (JFM 1989), and climatological mean JFM conditions. These ensembles are large enough to estimate the ENSO-induced changes of variability even in regions not usually associated with an ENSO effect. The focus is on the anomalous variability of precipitation and 500-mb heights.

The most important result from this analysis is that the patterns of the anomalous extratropical height variability change sharply from the synoptic to the intraseasonal to monthly timescales, but are similar thereafter. In contrast, the patterns of the anomalous tropical rainfall variability are nearly identical across these timescales. On the synoptic and monthly scales, the anomalous extratropical height variability is generally opposite for El Niño and La Niña, and is also roughly symmetric about the equator. On the intraseasonal scale, however, the anomalous height variability is of the same sign for El Niño and La Niña in the Atlantic sector, and is antisymmetric about the equator in the Pacific sector. In the North Pacific, these intraseasonal variance anomalies (which are consistent with a decrease of blocking activity during El Niño and an increase during La Niña) are of opposite sign to the monthly and seasonal variance anomalies.

The sharp differences across timescales in the ENSO-induced changes of extratropical variability suggest that different dynamical mechanisms dominate on different timescales. They also have implications for the predictability of extreme events on those timescales. Finally, there is evidence here that these impacts on extratropical variability may differ substantially from ENSO event to event, especially in the northern Atlantic and over Europe.

Corresponding author address: Dr. Gilbert P. Compo, NOAA–CIRES Climate Diagnostics Center, 325 Broadway, R/CDC1, Boulder CO 80305-3328. Email: compo@colorado.edu

Abstract

This paper is concerned with assessing the impact of the El Niño–Southern Oscillation (ENSO) on atmospheric variability on synoptic, intraseasonal, monthly, and seasonal timescales. Global reanalysis data as well as atmospheric general circulation model (AGCM) simulations are used for this purpose. For the observational analysis, 53 yr of NCEP reanalyses are stratified into El Niño, La Niña, and neutral winters [Jan–Feb–Mar (JFM)]. The AGCM analysis is based on three sets of 180 seasonal integrations made with prescribed global sea surface temperatures corresponding to an observed El Niño event (JFM 1987), an observed La Niña event (JFM 1989), and climatological mean JFM conditions. These ensembles are large enough to estimate the ENSO-induced changes of variability even in regions not usually associated with an ENSO effect. The focus is on the anomalous variability of precipitation and 500-mb heights.

The most important result from this analysis is that the patterns of the anomalous extratropical height variability change sharply from the synoptic to the intraseasonal to monthly timescales, but are similar thereafter. In contrast, the patterns of the anomalous tropical rainfall variability are nearly identical across these timescales. On the synoptic and monthly scales, the anomalous extratropical height variability is generally opposite for El Niño and La Niña, and is also roughly symmetric about the equator. On the intraseasonal scale, however, the anomalous height variability is of the same sign for El Niño and La Niña in the Atlantic sector, and is antisymmetric about the equator in the Pacific sector. In the North Pacific, these intraseasonal variance anomalies (which are consistent with a decrease of blocking activity during El Niño and an increase during La Niña) are of opposite sign to the monthly and seasonal variance anomalies.

The sharp differences across timescales in the ENSO-induced changes of extratropical variability suggest that different dynamical mechanisms dominate on different timescales. They also have implications for the predictability of extreme events on those timescales. Finally, there is evidence here that these impacts on extratropical variability may differ substantially from ENSO event to event, especially in the northern Atlantic and over Europe.

Corresponding author address: Dr. Gilbert P. Compo, NOAA–CIRES Climate Diagnostics Center, 325 Broadway, R/CDC1, Boulder CO 80305-3328. Email: compo@colorado.edu

Save
  • Barnett, T. P., and and Coauthors, 1994: Forecasting global ENSO-related climate anomalies. Tellus, 46A , 381397.

  • Barsugli, J. J., J. S. Whitaker, A. F. Loughe, P. D. Sardeshmukh, and Z. Toth, 1999: The effect of the 1997/98 El Niño on individual large-scale weather events. Bull. Amer. Meteor. Soc, 80 , 13991411.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., J. M. Wallace, N-C. Lau, and S. L. Mullen, 1977:: An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci, 34 , 10401053.

    • Search Google Scholar
    • Export Citation
  • Borges, M. D., and P. D. Sardeshmukh, 1995: Barotropic Rossby wave dynamics of zonally varying upper-level flows during northern winter. J. Atmos. Sci, 52 , 37793796.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1995: Organization of storm track anomalies by recurring low-frequency circulation anomalies. J. Atmos. Sci, 52 , 207226.

    • Search Google Scholar
    • Export Citation
  • Chen, W. Y., and H. M. van den Dool, 1997a: Asymmetric impact of tropical SST anomalies on atmospheric internal variability over the North Pacific. J. Atmos. Sci, 54 , 725740.

    • Search Google Scholar
    • Export Citation
  • Chen, W. Y., and H. M. van den Dool, 1997b: Atmospheric predictability of seasonal, annual, and decadal climate means and the role of the ENSO cycle: A model study. J. Climate, 10 , 12351254.

    • Search Google Scholar
    • Export Citation
  • Chen, W. Y., and H. M. van den Dool, 1999: Significant change of extratropical natural variability and potential predictability associated with the El Niño/Southern Oscillation. Tellus, 51A , 790802.

    • Search Google Scholar
    • Export Citation
  • Dole, R. M., and N. D. Gordon, 1983: Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Geographical distribution and regional persistence characteristics. Mon. Wea. Rev, 111 , 15671586.

    • Search Google Scholar
    • Export Citation
  • Efron, B., 1982: The Jackknife, the Bootstrap, and Other Resampling Plans. SIAM, 92 pp.

  • Fraedrich, K., 1990: European Grosswetter during the warm and cold extremes of the El Niño/Southern Oscillation. Int. J. Climatol, 10 , 2131.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., 1994: An ENSO impact on Europe? A review. Tellus, 46A , 541552.

  • Gershunov, A., and T. P. Barnett, 1998: ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: Observations and model results. J. Climate, 11 , 15751586.

    • Search Google Scholar
    • Export Citation
  • Gibson, J. K., P. Ka̧llberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1997: ERA description. ECWMF Re-analysis project report series 1, ECMWF Tech. Rep., 872 pp.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., and M. Ting, 1994: Organization of extratropical transients during El Niño. J. Climate, 7 , 745766.

  • Jenkins, G. M., and D. G. Watts, 1968: Spectral Analysis and Its Applications. Holden-Day, 525 pp.

  • Kalnay, E., and Coauthors. . 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc, 77 , 437471.

  • Kanamitsu, M., and Coauthors. . 1991: Description of NMC global data assimilation and forecast system. Wea. Forecasting, 6 , 425435.

  • Katz, R. W., and B. G. Brown, 1992: Extreme events in a changing climate: Variability is more important than averages. Climatic Change, 21 , 289302.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., M. P. Hoerling, M. Ji, A. Leetma, and P. D. Sardeshmukh, 1996: Asessing a GCM's suitability for making seasonal predictions. J. Climate, 9 , 115129.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., 1988: Variability in the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci, 45 , 27182743.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev, 111 , 4650.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., and G. N. Kiladis, 1999: Interaction between ENSO, transient circulation, and tropical convection over the Pacific. J. Climate, 12 , 30623086.

    • Search Google Scholar
    • Export Citation
  • May, W., 1999: Space–time spectra of the atmospheric intraseasonal variability in the extratropics and their dependency on the El Niño Southern Oscillation phenomenon: Model versus observation. Climate Dyn, 15 , 369387.

    • Search Google Scholar
    • Export Citation
  • May, W., and L. Bengtsson, 1998: The signature of ENSO in the northern hemisphere midlatitude seasonal mean flow and high-frequency intraseasonal variability. Meteor. Atmos. Phys, 69 , 81100.

    • Search Google Scholar
    • Export Citation
  • Newman, M., P. D. Sardeshmukh, and C. Penland, 1997: Stochastic forcing of the wintertime extratropical flow. J. Atmos. Sci, 54 , 435455.

    • Search Google Scholar
    • Export Citation
  • Newman, M., P. D. Sardeshmukh, and J. W. Bergman, 2000: An assessment of the NCEP, NASA, and ECMWF reanalyses over the tropical western Pacific warm pool. Bull. Amer. Meteor. Soc, 81 , 4148.

    • Search Google Scholar
    • Export Citation
  • Parker, D. E., C. K. Folland, A. Bevan, M. N. Ward, M. Jackson, and K. Maskell, 1995: Marine surface data for analyses of climate fluctuations on interannual to century time scales. Natural Climate Variability on Decade to Century Time Scales, D. G. Martinson et al., Eds., National Academy Press, 241–250.

    • Search Google Scholar
    • Export Citation
  • Renshaw, A. C., D. P. Rowell, and C. K. Folland, 1998: Wintertime low-frequency weather variability in the North Pacific–American sector 1949–93. J. Climate, 11 , 10731093.

    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., 1998: ENSO-related variability in the frequency of South Pacific blocking. Mon. Wea. Rev, 126 , 31173123.

  • Renwick, J. A., and J. M. Wallace, 1996: Relationships between North Pacific wintertime blocking, El Niño, and the PNA pattern. Mon. Wea. Rev, 124 , 20712076.

    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., and M. J. Revell, 1999: Blocking over the South Pacific and Rossby wave propagation. Mon. Wea. Rev, 127 , 22332247.

  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., and M. Ghil, 1999: Large-scale weather regimes and local climate over the western United States. J. Climate, 12 , 17961813.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., 1993: The baroclinic chi problem and its application to the diagnosis of atmospheric heating rates. J. Atmos. Sci, 50 , 10991112.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., M. Newman, and M. D. Borges, 1997: Free barotropic Rossby wave dynamics of the wintertime low-frequency flow. J. Atmos. Sci, 54 , 523.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., M. Newman, and C. R. Winkler, 1999: Dynamically consistent estimates of diabatic heating. Proc. 24th Annual Climate Diagnostics Workshop, Tucson, AZ, NOAA, 172–175.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., G. P. Compo, and C. Penland, 2000: Changes of probability associated with El Niño. J. Climate, 13 , 42684286.

  • Schubert, S. D., M. J. Suarez, Y. Chang, and G. Branstator, 2001: The impact of ENSO on extratropical low-frequency noise in seasonal forecasts. J. Climate, 14 , 23512365.

    • Search Google Scholar
    • Export Citation
  • Smith, C. A., and P. D. Sardeshmukh, 2000: The effect of ENSO on the intraseasonal variance of surface temperatures in winter. Int. J. Climatol, 20 , 15431557.

    • Search Google Scholar
    • Export Citation
  • Straus, D. M., and J. Shukla, 1997: Variations of midlatitude transient dynamics associated with ENSO. J. Atmos. Sci, 54 , 777790.

  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc, 78 , 27712777.

  • Vincent, D. G., A. Fink, J. M. Schrage, and P. Speth, 1998: High- and low-frequency intraseasonal variance of OLR on annual and ENSO timescales. J. Climate, 11 , 968986.

    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., 2000: A method to aid in the determination of the sampling size of AGCM ensembles. Climate Dyn, 16 , 321331.

  • Whitaker, J. S., and P. D. Sardeshmukh, 1998: A linear theory of extratropical synoptic eddy statistics. J. Atmos. Sci, 55 , 237258.

  • Winkler, C. R., M. Newman, and P. D. Sardeshmukh, 2001: A linear model of wintertime low-frequency variability. Part I: Formulation and forecast skill. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 286 57 8
PDF Downloads 152 69 0