• Aagaard, K., and E. C. Carmack, 1989: The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res, 94 , (C10),. 1448514498.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and L. A. Smith, 1996: Monte Carlo SSA: Detecting irregular oscillations in the presence of colored noise. J. Climate, 9 , 33733404.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., 1991: The interaction of multiple time scales in the tropical climate system. J. Climate, 4 , 269285.

  • Barnett, T. P., L. Dümenil, U. Schlese, E. Roeckner, and M. Latif, 1989: The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci, 46 , 661685.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev, 115 , 10831126.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., R. E. Livezey, and M. S. Halpert, 1991: Modulation of Southern Oscillation–Northern Hemisphere mid-winter climate relationships by the QBO. J. Climate, 4 , 203217.

    • Search Google Scholar
    • Export Citation
  • Cariolle, D., M. Amidei, M. Déqué, J-F. Mahfouf, P. Simon, and H. Teyssédre, 1993: A quasi-biennial oscillation signal in general circulation model simulations. Science, 261 , 13131316.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., M. C. Sierreze, and D. A. Robinson, 1999: Atmospheric controls on Eurasian snow extent. Int. J. Climatol, 19 , 2740.

  • Delworth, T. L., and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate, 6 , 19932011.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. L. Blackmon, 1995: On the relationship between tropical and North Pacific sea surface temperature variations. J. Climate, 8 , 16771680.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and A. A. Tsonis, 1996: Singular Spectrum Analysis: A New Tool in Time Series Analysis. Plenum Press, 164 pp.

  • Folland, C. K., and D. E. Parker, 1995: Correction of instrumental biases in historical sea surface temperature data. Quart. J. Roy. Meteor. Soc, 121 , 319367.

    • Search Google Scholar
    • Export Citation
  • Frei, A., and D. A. Robinson, 1999: Northern Hemisphere snow extent: Regional variability 1972–1994. Int. J. Climatol, 19 , 15351560.

    • Search Google Scholar
    • Export Citation
  • Graham, N. E., 1994: Decadal-scale climate variability in the tropical and North Pacific during the 1970s and 1980s: Observations and model results. Climate Dyn, 10 , 135162.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya, V. V. Koknaeva, T. A. Belodylova, and T. R. Karl, 1991: Overcoming biases of precipitation measurement: A history of the USSR experience. Bull. Amer. Meteor. Soc, 72 , 17251733.

    • Search Google Scholar
    • Export Citation
  • Hibler, W. D. I. I. I., and J. Zhang, 1995: On the effect of sea-ice dynamics on oceanic thermohaline circulation. Ann. Glaciol, 21 , 361368.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic oscillation: Regional temperatures and precipitation. Science, 269 , 676679.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and H. von Loon, 1997: Decadal variations in climate associated with the North Atlantic oscillation. Climatic Change, 36 , 301326.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and K. E. Trenberth, 1999: Global sea surface temperature analyses: Multiple problems and their implications for climate analysis, modeling, and reanalysis. Bull. Amer. Meteor. Soc, 80 , 26612678.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc, 77 , 437471.

  • Lau, N-C., 1997: Interactions between global SST anomalies and the midlatitude atmospheric circulation. Bull. Amer. Meteor. Soc, 78 , 2133.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 1994: A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere–ocean system. J. Climate, 7 , 11841207.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and T. M. Smith, 1999: Covariability of aspects of North American climate with global sea surface temperatures on interannual to interdecadal timescales. J. Climate, 12 , 289302.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and J. Park, 1994: Global-scale modes of surface temperature variability on interannual to century timescales. J. Geophys. Res, 99 , 2581925833.

    • Search Google Scholar
    • Export Citation
  • Mysak, L. A., D. K. Manak, and R. F. Marsden, 1990: Sea-ice anomalies observed in the Greenland and Labrador Seas during 1901–1984 and their relation to an interdecadal Arctic climate cycle. Climate Dyn, 5 , 111133.

    • Search Google Scholar
    • Export Citation
  • North, G. R., L. B. Thomas, and R. F. Cahalan, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev, 110 , 699706.

    • Search Google Scholar
    • Export Citation
  • Parker, D. E., C. K. Folland, and M. Jackson, 1995: Marine surface temperature: Observed variations and data requirements. Climatic Change, 31 , 559600.

    • Search Google Scholar
    • Export Citation
  • Peng, S., and L. A. Mysak, 1993: A teleconnection study of interannual sea surface temperature fluctuations in the northern North Atlantic and precipitation and runoff over western Siberia. J. Climate, 6 , 876885.

    • Search Google Scholar
    • Export Citation
  • Plaut, G., and R. Vautard, 1994: Spells of low-frequency oscillations and weather regimes in the Northern Hemisphere. J. Atmos. Sci, 51 , 210236.

    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. J. Climatol, 7 , 1330.

  • Robinson, D. A., K. E. Dewey, and R. R. Heim, 1993: Global snow cover monitoring: An update. Bull. Amer. Meteor. Soc, 74 , 16891696.

  • Rogers, J. C., 1984: The association between the North Atlantic oscillation and the Southern Oscillation in the Northern Hemisphere. Mon. Wea. Rev, 112 , 19992015.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1997: North Atlantic storm track variability and its association to North Atlantic oscillation and climate variability of northern Europe. J. Climate, 10 , 16351647.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., F. Carse, R. G. Barry, and J. C. Rogers, 1997: Icelandic low cyclone activity: Climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation. J. Climate, 10 , 453464.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1976: Spatial and temporal variations of the Southern Oscillation. Quart. J. Roy. Meteor. Soc, 102 , 639654.

  • Trenberth, K. E., and W-T. K. Shin, 1984: Quasi-biennial fluctuations in sea level pressures over the Northern Hemisphere. Mon. Wea. Rev, 112 , 761777.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn, 9 , 303319.

  • Vautard, R. P., P. Yiou, and M. Ghil, 1992: Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D, 58 , 95126.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 528 pp.

  • Wallace, J. M., C. Smith, and Q. Jiang, 1990: Spatial patterns of atmosphere–ocean interactions in the northern winter. J. Climate, 3 , 990998.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and T. Nitta, 1998: Relative impacts of snow and sea surface temperature anomalies on an extreme phase in the winter atmospheric circulation. J. Climate, 11 , 28372857.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., C. M. Rowe, and W. D. Philpot, 1985: Small-scale climate maps: A sensitivity analysis of some common assumptions associated with the grid-point interpolation and contouring. Amer. Cartographer, 12 , 516.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., and Y. Tanimoto, 1998: A pan-Atlantic decadal climate oscillation. Geophys. Res. Lett, 25 , 21852188.

  • Yasunari, T., A. Kitoh, and T. Tokioka, 1991: Local and remote responses to excessive snow mass over Eurasia appearing in the northern spring and summer climate. J. Meteor. Soc. Japan, 69 , 473487.

    • Search Google Scholar
    • Export Citation
  • Ye, H., 2000: Decadal variability of Russian winter snow accumulation and its associations with Atlantic sea surface temperature anomalies. Int. J. Climatol, 20 , 17091728.

    • Search Google Scholar
    • Export Citation
  • Ye, H., 2001: Characteristics of winter precipitation variation over northern central Eurasia and their connections to sea surface temperatures over the Atlantic and Pacific Oceans. J. Climate, 14 , 31403155.

    • Search Google Scholar
    • Export Citation
  • Ye, H., H. Cho, and P. Gustafson, 1998: The changes in Russian winter snow accumulation during 1936–83 and its spatial patterns. J. Climate, 11 , 856863.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10 , 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 196 54 3
PDF Downloads 42 16 1

Quasi-Biennial and Quasi-Decadal Variations in Snow Accumulation over Northern Eurasia and Their Connections to the Atlantic and Pacific Oceans

Hengchun YeDepartment of Geography and Urban Analysis, California State University, Los Angeles, California

Search for other papers by Hengchun Ye in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Spatial and temporal characteristics of winter snow depth variation over northern Eurasia and their connections to sea surface temperatures (SSTs) and associated atmospheric circulation anomalies, surface air temperatures, and precipitation are examined by using 60 yr (1936–95) of station data records. This study found that snow depth variation over the region east of the Caspian Sea and west of China, explaining 10.1% of total snow depth variance, has a quasi-biennial variability of about 2.5 yr. The snow depth variation over central European Russia and western-central Siberia, explaining 8.1% of the total snow depth variance, has a quasi-decadal variability of about 11.8 yr. The snow depth variation over the northern Ural Mountains, explaining 7.5% of the total snow depth variance has, variability of about 8 and 14 yr.

The quasi-biennial snow depth variation is associated with SSTs over the northern North Pacific and tropical western Atlantic extending into the Gulf of Mexico. The associated atmospheric circulation pattern of Eurasia 1 (EU-1) and the Pacific–North American (PNA) pattern determine the surface air temperature conditions and thus snow depth at the biennial timescale. The quasi-decadal snow variation is associated with a well-known SST anomaly pattern over the Atlantic, having opposite SST variations in alternating latitudinal belts, and SSTs over the tropical Pacific Ocean. The associated atmospheric North Atlantic oscillation (NAO) and the circulation anomaly over central Siberia affect both surface air temperature and precipitation and thus snow depth anomaly on this quasi-decadal timescale. The results provide observational evidence of possible causes for snow depth variability over high-latitude regions.

Corresponding author address: Dr. Hengchun Ye, Department of Geography and Urban Analysis, California State University, Los Angeles, 5151 State University Dr., Los Angeles, CA 90032-8222. Email: hengchun.ye@calstatela.edu

Abstract

Spatial and temporal characteristics of winter snow depth variation over northern Eurasia and their connections to sea surface temperatures (SSTs) and associated atmospheric circulation anomalies, surface air temperatures, and precipitation are examined by using 60 yr (1936–95) of station data records. This study found that snow depth variation over the region east of the Caspian Sea and west of China, explaining 10.1% of total snow depth variance, has a quasi-biennial variability of about 2.5 yr. The snow depth variation over central European Russia and western-central Siberia, explaining 8.1% of the total snow depth variance, has a quasi-decadal variability of about 11.8 yr. The snow depth variation over the northern Ural Mountains, explaining 7.5% of the total snow depth variance has, variability of about 8 and 14 yr.

The quasi-biennial snow depth variation is associated with SSTs over the northern North Pacific and tropical western Atlantic extending into the Gulf of Mexico. The associated atmospheric circulation pattern of Eurasia 1 (EU-1) and the Pacific–North American (PNA) pattern determine the surface air temperature conditions and thus snow depth at the biennial timescale. The quasi-decadal snow variation is associated with a well-known SST anomaly pattern over the Atlantic, having opposite SST variations in alternating latitudinal belts, and SSTs over the tropical Pacific Ocean. The associated atmospheric North Atlantic oscillation (NAO) and the circulation anomaly over central Siberia affect both surface air temperature and precipitation and thus snow depth anomaly on this quasi-decadal timescale. The results provide observational evidence of possible causes for snow depth variability over high-latitude regions.

Corresponding author address: Dr. Hengchun Ye, Department of Geography and Urban Analysis, California State University, Los Angeles, 5151 State University Dr., Los Angeles, CA 90032-8222. Email: hengchun.ye@calstatela.edu

Save