Global Retrospective Estimation of Soil Moisture Using the Variable Infiltration Capacity Land Surface Model, 1980–93

Bart Nijssen Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington

Search for other papers by Bart Nijssen in
Current site
Google Scholar
PubMed
Close
,
Reiner Schnur Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington

Search for other papers by Reiner Schnur in
Current site
Google Scholar
PubMed
Close
, and
Dennis P. Lettenmaier Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington

Search for other papers by Dennis P. Lettenmaier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A daily set of surface meteorological forcings, model-derived surface moisture fluxes, and state variables for global land areas for the period of 1979–93 is described. The forcing dataset facilitates global simulations and evaluation of land surface parameterizations without relying heavily on GCM output. Daily precipitation and temperature are based on station observations, daily wind speeds are based on National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis data, and the remaining meteorological forcing variables (shortwave radiation, longwave radiation, and vapor pressure) are derived from the precipitation and temperature series. The Variable Infiltration Capacity (VIC) land surface model is used to produce a set of derived fluxes and state variables, including snow water equivalent, evapotranspiration, runoff, and soil moisture storage. The main differences between the new dataset and other, similar datasets are the daily time step, the use of a specified simulation period as opposed to climatological averages, the length of the simulation period, the use of observed meteorological data, and the use of a more realistic hydrological model. Comparison with observations and existing climatologies shows that 1) the interannual variation in simulated snow cover extent is similar to observations in Eurasia but is somewhat underpredicted in North America; 2) the components of the global and continental water balance are similar to those in previously produced climatologies, although runoff is somewhat lower; 3) patterns of simulated soil moisture storage are similar to the climatology of Mintz and Serafini, but the more sophisticated VIC hydrological model produces a larger range in soil moisture; and 4) the annual cycle and spatial patterns in soil moisture compare well with soil moisture observations in Illinois and in central Eurasia, but mean modeled soil moisture is somewhat lower than observed, and observed soil moisture shows a greater interannual persistence than do the simulations.

Current affiliation: Max-Planck-Institut für Meteorologie, Hamburg, Germany.

Corresponding author address: Dennis P. Lettenmaier, Dept. of Civil and Environmental Engineering, Box 352700, University of Washington, Seattle, WA 98195-2700.

Email: dennisl@u.washington.edu

Abstract

A daily set of surface meteorological forcings, model-derived surface moisture fluxes, and state variables for global land areas for the period of 1979–93 is described. The forcing dataset facilitates global simulations and evaluation of land surface parameterizations without relying heavily on GCM output. Daily precipitation and temperature are based on station observations, daily wind speeds are based on National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis data, and the remaining meteorological forcing variables (shortwave radiation, longwave radiation, and vapor pressure) are derived from the precipitation and temperature series. The Variable Infiltration Capacity (VIC) land surface model is used to produce a set of derived fluxes and state variables, including snow water equivalent, evapotranspiration, runoff, and soil moisture storage. The main differences between the new dataset and other, similar datasets are the daily time step, the use of a specified simulation period as opposed to climatological averages, the length of the simulation period, the use of observed meteorological data, and the use of a more realistic hydrological model. Comparison with observations and existing climatologies shows that 1) the interannual variation in simulated snow cover extent is similar to observations in Eurasia but is somewhat underpredicted in North America; 2) the components of the global and continental water balance are similar to those in previously produced climatologies, although runoff is somewhat lower; 3) patterns of simulated soil moisture storage are similar to the climatology of Mintz and Serafini, but the more sophisticated VIC hydrological model produces a larger range in soil moisture; and 4) the annual cycle and spatial patterns in soil moisture compare well with soil moisture observations in Illinois and in central Eurasia, but mean modeled soil moisture is somewhat lower than observed, and observed soil moisture shows a greater interannual persistence than do the simulations.

Current affiliation: Max-Planck-Institut für Meteorologie, Hamburg, Germany.

Corresponding author address: Dennis P. Lettenmaier, Dept. of Civil and Environmental Engineering, Box 352700, University of Washington, Seattle, WA 98195-2700.

Email: dennisl@u.washington.edu

Save
  • Abdulla, F. A., D. P. Lettenmaier, E. F. Wood, and J. A. Smith, 1996:Application of a macroscale hydrologic model to estimate the water balance of the Arkansas–Red River Basin. J. Geophys. Res.,101, 7449–7459.

  • Batjes, N. H., 1995: A homogenized soil data file for global environmental research: A subset of FAO, ISRIC and NCRS profiles. Rep. 95/10, International Soil Reference and Information Centre, Wageningen, Netherlands, 50 pp. [Available from ISRIC, P.O. Box 535, 6700 AJ Wageningen, Netherlands.].

  • Baumgartner, A., and E. Reichel, 1975: The World Water Balance: Mean Annual Global, Continental and Maritime Precipitation, Evaporation and Runoff. Elsevier Scientific, 179 pp.

  • Betts, A. K., J. H. Ball, A. C. M. Beljaars, M. J. Miller, and P. A. Viterbo, 1996: The land surface–atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res.,101, 7209–7225.

  • Bras, R. A., 1990: Hydrology, an Introduction to Hydrologic Science. Addison-Wesley, 643 pp.

  • Bristow, K. L., and G. S. Campbell, 1984: On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric. For. Meteor.,31, 159–166.

  • Budyko, M., 1956: Heat Balance of the Earth’s Surface (in Russian). Gidrometeoizdat, 255 pp.

  • Calder, I. R., 1993: Hydrologic effects of land-use change. Handbook of Hydrology, D. R. Maidment, Ed., McGraw-Hill, 13.1–13.50.

  • Campbell, G. S., 1974: A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci. Soc. Amer. J.,117, 311–314.

  • Carter, A. J., and R. J. Scholes, 1999: Generating a global database of soil properties. Environmentek CSIR, 10 pp.

  • Chen, J. M., P. D. Blanken, T. A. Black, M. Guilbeault, and S. Chen, 1997: Radiation regime and canopy architecture in a boreal aspen forest. Agric. For. Meteor.,86, 107–125.

  • Cosby, B. J., G. M. Hornberger, R. B. Clapp, and T. R. Ginn, 1984:A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res.,20, 682–690.

  • Dingman, S. L., 1994: Physical Hydrology. Prentice-Hall, 575 pp.

  • Dirmeyer, P. A., 1995: Problems in initializing soil wetness. Bull. Amer. Meteor. Soc.,76, 2234–2240.

  • ——, A. J. Dolman, and N. Sato, 1999: The pilot phase of the Global Soil Wetness Project. Bull. Amer. Meteor. Soc.,80, 851–878.

  • Ducoudré, N. I., K. Laval, and A. Perrier, 1993: SECHIBA, a new set of parameterizations of the hydrologic exchanges at the land–atmosphere interface within the LMD atmospheric general circulation model. J. Climate,6, 248–273.

  • Entin, J., A. Robock, K. Y. Vinnikov, S. Qiu, V. Zabelin, S. Liu, A. Namkhai, and T. Adyasuren, 1999: Evaluation of Global Soil Wetness Project soil moisture simulations. J. Meteor. Soc. Japan,77, 183–198.

  • Fan, Y., E. E. Wood, M. L. Baeck, and J. A. Smith, 1996: Fractional coverage of rainfall over a grid: Analyses of NEXRAD data over the southern plains. Water Resour. Res.,32, 2787–2802.

  • FAO, 1995: The Digital Soil Map of the World, Version 3.5. United Nations Food and Agriculture Organization, CD-ROM. [Available from Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy.].

  • Geng, S., F. W. T. Penning, and I. Supit, 1986: A simple method for generating daily rainfall data. Agric. For. Meteor.,36, 363–376.

  • Gerakis, A., 1999: A computer program for soil textural classification. Soil Sci. Soc. Amer. J.,63, 807–808.

  • Goulden, M. L., B. Daube, S. Fan, D. Sutton, A. Bazzaz, J. W. Munger, and S. Wofsy, 1997: Physiological responses of a black spruce forest to weather. J. Geophys. Res.,102, 28 987–28 996.

  • Goutorbe, J. P., and Coauthors, 1997: An overview of HAPEX-Sahel:A study in climate and desertification. J. Hydrol.,189, 4–17.

  • Graham, S. T., J. S. Famiglietti, and D. R. Maidment, 1999: 5-minute, ½°, and 1° data sets of continental watersheds and river networks for use in regional and global hydrologic and climate system modeling studies. Water Resour. Res.,35, 583–587.

  • Hansen, M. C., R. S. DeFries, J. R. G. Townshend, and R. Sohlberg, 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens.,21, 1331–1364.

  • Henderson-Sellers, A., Z.-L. Yang, and R. Dickinson, 1993: The Project for Intercomparison of Land-Surface Parameterization Schemes. Bull. Amer. Meteor. Soc.,74, 1335–1349.

  • ——, A. J. Pitman, P. K. Love, P. Irranejad, and T. H. Chen, 1995: The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3. Bull. Amer. Meteor. Soc.,76, 489–503.

  • Hollinger, S. E., and S. A. Isard, 1994: A soil moisture climatology of Illinois. J. Climate,7, 822–833.

  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset. Bull. Amer. Meteor. Soc.,78, 5–20.

  • Hulme, M., 1995: Estimating global changes in precipitation. Weather,50, 34–42.

  • Jones, P. D., 1994: Hemispheric surface air temperature variations: A reanalysis and an update to 1993. J. Climate,7, 1794–1802.

  • Kalinin, G. P., 1968: Problemy Global’noi Gidrologii (Global Hydrology). Gidrometeorologicheskoe Izdatel’svo.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc.,77, 437–471.

  • Kane, D. L., R. E. Gieck Jr., L. D. Hinzman, and E. K. Lilly, 1997:Meteorologic and hydrologic data sets for the North Slope of Alaska along the Kuparuk River Watershed, 1985–1995. Internal Rep., Water Research Center, Institute of Northern Engineering, University of Alaska, Fairbanks, AK. [Available from Water Research Center Institute of Northern Engineering, University of Alaska, Fairbanks, Fairbanks, AK 99775-5860.].

  • Kimball, J. S., S. W. Running, and R. R. Nemani, 1997: An improved method for estimating surface humidity from daily minimum temperature. Agric. For. Meteor.,85, 87–98.

  • Korzun, V. I., Ed., 1978: World Water Balance and Water Resources of the Earth. Studies and Reports in Hydrology, Vol. 25, UNESCO, 663 pp.

  • Koster, R. D., and M. J. Suarez, 1995: The relative contributions of land and ocean processes to precipitation variability. J. Geophys. Res.,100, 13 775–13 790.

  • ——, and P. C. D. Milly, 1997: The interplay between transpiration and runoff formulations in land surface schemes used with atmospheric models. J. Climate,10, 1578–1591.

  • ——, M. J. Suarez, and M. Heiser, 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor.,1, 26–46.

  • Legates, D. R., and C. J. Willmott, 1990: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol.,10, 111–127.

  • Leung, L. R., A. F. Hamlet, D. P. Lettenmaier, and A. Kumar, 1999:Simulations of the ENSO hydroclimate signals in the Pacific Northwest Columbia River Basin. Bull. Amer. Meteor. Soc.,80, 2313–2329.

  • Levis, S., M. Coe, and J. Foley, 1996: Hydrologic budget of a land surface model: A global application. J. Geophys. Res.,101, 16 921–16 930.

  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res.,99, 14 415–14 428.

  • ——, ——, and ——, 1996: One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J. Geophys. Res.,101, 21 403–21 422.

  • ——, and Coauthors, 1998: The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) Phase 2(c) Red–Arkansas River Basin experiment: 2. Spatial and temporal analysis of energy fluxes. Global Planet. Change,19, 137–159.

  • Liston, G. E., Y. C. Sud, and G. K. Walker, 1993: Design of a global soil moisture initialization procedure for the Simple Biosphere model. NASA Tech. Memo. 104590, National Aeronautics and Space Administration, Greenbelt, MD, 138 pp.

  • Lohmann, D., R. Nolte-Holube, and E. Raschke, 1996: A large-scale horizontal routing model to be coupled to land surface parametrization schemes. Tellus,48A, 708–721.

  • ——, and Coauthors, 1998a: The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) Phase 2(c) Red–Arkansas River Basin experiment: 3. Spatial and temporal analysis of water fluxes. Global Planet. Change,20, 161–179.

  • ——, E. Raschke, B. Nijssen, and D. P. Lettenmaier, 1998b: Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol. Sci. J.,43, 131–141.

  • ——, ——, ——, and ——, 1998c: Regional scale hydrology: II. Application of the VIC-2L model to the Weser River, Germany. Hydrol. Sci. J.,43, 143–158.

  • Lvovitch, M. I., 1973: The global water balance. Eos, Trans. Amer. Geophys. Union,54, 28–42.

  • Manabe, S., 1969: Climate and the ocean circulation. I. The atmospheric circulation and the hydrology of the earth’s surface. Mon. Wea. Rev.,97, 739–774.

  • Matsuyama, H., and K. Masuda, 1997: Estimates of continental-scale soil wetness and comparison with the soil moisture data of Mintz and Serafini. Climate Dyn.,13, 681–689.

  • Maurer, E. P., G. M. O’Donnell, D. P. Lettenmaier, and J. O. Roads, 2000: Evaluation of NCEP–NCAR reanalysis water and energy budgets using macroscale hydrological simulations as a benchmark. Observations and Modeling of the Land Surface Hydrological Processes, V. Lakshmi, J. Albertson, and J. Schaake, Eds., Amer. Geophys. Union, in press.

  • Meeson, B. W., F. E. Corprew, J. M. P. McManus, D. M. Myers, J. Closs, K. Sun, D. Sunday, and P. Sellers, 1995: ISLSCP Initiative—Global Data Sets for Land–Atmosphere Models, 1987–1988. Vols. 1–5. NASA, CD-ROM. [Available from Goddard DAAC Help Desk, Code 902.2, NASA Goddard Space Flight Center, Greenbelt, MD 20771.].

  • Mintz, Y., 1984: The sensitivity of numerically simulated climates to land-surface boundary conditions. The Global Climate, J. J. Houghton, Ed., Cambridge University Press, 79–105.

  • ——, and Y. V. Serafini, 1992: A global monthly climatology of soil moisture and water balance. Climate Dyn.,8, 13–27.

  • Montény, B. A., and Coauthors, 1997: The role of the Sahelian biosphere on the water and the CO2 cycle during the HAPEX-Sahel experiment. J. Hydrol.,188–189, 516–535.

  • Myneni, R. B., R. R. Nemani, and S. W. Running, 1997: Estimation of global leaf area index and absorbed PAR using radiative transfer models. IEEE Trans. Geosci. Remote Sens.,35, 1380–1393.

  • National Snow and Ice Data Center, 1996: Northern Hemisphere EASE-Grid weekly snow cover and sea ice extent. Vols.1.0–2.0. EOSDIS NSIDC.

  • Nicks, A. D., and J. F. Harp, 1980: Stochastic generation of temperature and solar radiation data. J. Hydrol.,48, 1–17.

  • Nijssen, B., D. P. Lettenmaier, X. Liang, S. W. Wetzel, and E. F. Wood, 1997: Streamflow simulation for continental-scale river basins. Water Resour. Res.,33, 711–724.

  • Oki, T., 1999: Global water cycle. Global Energy and Water Cycles, K. A. Browning and R. J. Gurney, Eds., Cambridge University Press, 10–27.

  • ——, K. Musiake, H. Matsuyama, and K. Masuda, 1995: Global atmospheric water balance and runoff from large river basins. Hydrol. Processes,9, 655–678.

  • Robock, A., C. A. Schlosser, K. Y. Vinnikov, N. A. Speranskaya, J. K. Entin, and S. Qiu, 1998: Evaluation of the AMIP soil moisture simulation. Global Planet. Change,19, 181–208.

  • ——, K. Y. Vinnikov, G. Srinivasan, J. K. Entin, S. E. Hollinger, N. A. Speranskaya, S. Liu, and A. Namkhai, 2000: The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc.,81, 1281–1299.

  • Row, L. W., D. A. Hastings, and P. K. Dunbar, 1995: Terrainbase Worldwide Digital Terrain Data Documentation Manual, release 1.0. National Geophysical Data Center, CD-ROM. [Available from National Geophysical Data Center, Mail Code E/GC, 325 Broadway, Boulder, CO 80303-3328; or online at http://www.ngdc.noaa.gov.].

  • Schemm, J., S. Schubert, J. Terry, and S. Bloom, 1992: Estimates of monthly mean soil moisture for 1979–1989. NASA Tech. Memo. 104571, National Aeronautics and Space Administration, Greenbelt, MD, 260 pp.

  • Schlosser, C. A., A. Robock, K. Y. Vinnikov, N. A. Speranskaya, and Y. Xue, 1997: 18-year land-surface hydrology model simulations for a midlatitude grassland catchment in Valdai, Russia. Mon. Wea. Rev.,125, 3279–3296.

  • ——, A. G. Slater, A. Robock, A. J. Pitman, K. Y. Vinnikov, A. Henderson-Sellers, N. A. Speranskaya, and K. Mitchell, 2000: Simulations of a boreal grassland hydrology at Valdai, Russia: PILPS phase 2(d). Mon. Wea. Rev.,128, 301–321.

  • Sellers, P. J., F. G. Hall, G. Asrar, D. E. Strebel, and R. E. Murphy, 1992: An overview of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE). J. Geophys. Res.,97, 18 345–18 371.

  • ——, S. Los, C. Tucker, C. Justice, D. Dazlich, G. Collatz, and D. Randall, 1994: A global 1 by 1 degree NDVI data set for climate studies. Part 2: The generation of global fields of terrestrial biophysical parameters from the NDVI. Int. J. Remote Sens.,15, 3519–3545.

  • Shuttleworth, W. J., and Coauthors, 1984: Observations of radiation exchange above and below Amazonian forest. Quart. J. Roy. Meteor. Soc.,110, 1163–1169.

  • Smith, J. A., 1993: Precipitation. Handbook of Hydrology, D. R. Maidment, Ed., McGraw-Hill, 3.1–4.47.

  • Storck, P., and D. P. Lettenmaier, 1999: Predicting the effect of a forest canopy on ground snow accumulation and ablation in maritime climates. Proc. 67th Western Snow Conf., Fort Collins, CO, 1–12.

  • Thornton, P. E., and S. W. Running, 1999: An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric. For. Meteor.,93, 211–228.

  • Thorntwaite, C. W., and J. R. Mather, 1955: The world water balance. Publ. Climatol.,8, 1–86.

  • Todini, E., 1996: The ARNO rainfall–runoff model. J. Hydrol.,175, 339–382.

  • Vinnikov, K. Y., and I. B. Yeserpova, 1991: Soil moisture: Empirical data and model results. J. Climate,4, 66–79.

  • ——, A. Robock, N. A. Speranskaya, and C. A. Schlosser, 1996: Scales of temporal and spatial variability of midlatitude soil moisture. J. Geophys. Res.,101, 7163–7164.

  • Willmott, C. J., C. M. Rowe, and Y. Mintz, 1985: Climatology of the terrestrial seasonal water cycle. J. Climatol.,5, 589–606.

  • Wood, E. F., D. P. Lettenmaier, X. Liang, B. Nijssen, and S. W. Wetzel, 1997: Hydrological modeling of continental-scale basins. Annu. Rev. Earth Planet. Sci.,25, 279–300.

  • ——, and Coauthors, 1998: The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) Phase 2(c) Red–Arkansas River Basin experiment: 1. Experiment description and summary intercomparisons. Global Planet. Change,19, 115–135.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1298 446 43
PDF Downloads 736 213 21