Abstract
Interannual variability of the North Pacific storm track observed over 17 recent winters is documented. The local storm track activity is measured by a meridional flux of sensible heat associated with the lower-tropospheric subweekly fluctuations. The interannual variability in the heat flux over the northwestern (NW) Pacific is found to be strongest in midwinter. The first empirical orthogonal function of the interannual variability in midwinter captures the decadal tendency toward the enhanced storm track activity in midwinter over the NW Pacific, in association with the decadal weakening of the east Asian winter monsoon (Siberian high) and the Aleutian low that occurred in the late 1980s. The most marked signature of this enhancement is that the midwinter minimum in the storm track activity, which had been apparent in the early to mid-1980s, almost disappeared afterward. As opposed to linear theory of baroclinic instability, the enhanced activity occurred despite the weakening of the Pacific jet. As the excessively strong westerlies weakened, the eddy temperature field tended to become better correlated with the eddy meridional and vertical velocities, suggesting that eddy structure tends to become more efficient in converting the mean-flow available potential energy into eddy kinetic energy for growth. The weakened jet also acted to prolong the residence time for migratory eddies in the baroclinic zone, which seemingly overcompensated the effect of the reduced mean-flow baroclinicity but appeared to be of secondary importance. Over the Far East, tropospheric warming to the north of the weakened jet appears to be associated with an anomalous overturning in the thermally direct sense, which is not attributable to the feedback from the concomitant enhancement in the local storm track activity.
Over the NW Pacific, the enhanced poleward heat transport by the intensified storm track tended to be compensated by the reduced transport by the weakened monsoonal flow, leaving rather small anomalies in the net transport. Also over the NW Pacific, the weakened monsoonal flow and enhanced storm track activity since the late 1980s led to the reduction in the evaporation and associated latent heat release from the ocean surface and increased precipitation, respectively. The resultant anomalous moisture deficit was compensated by the anomalous moisture transport from the northeastern Pacific, where the enhanced evaporation and reduced precipitation gave rise to an anomalous moisture surplus.
Additional affiliation: IGCR, Frontier Research System for Global Change, Yokohama, Japan
Current affiliation: National Patent Office of Japan, Tokyo, Japan
Corresponding author address: Dr. Hisashi Nakamura, Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Email: hisashi@eps.s.u-tokyo.ac.jp