• Agee, E. M., , and R. P. Howley, 1977: Latent and sensible heat flux calculations at the air–sea interface during AMTEX 74. J. Appl. Meteor., 16 , 443447.

    • Search Google Scholar
    • Export Citation
  • Blanton, J. O., , J. A. Amft, , D. K. Lee, , and A. Riordan, 1989: Wind stress and heat fluxes observed during winter and spring, 1986. J. Geophys. Res., 94 , 1068610698.

    • Search Google Scholar
    • Export Citation
  • Bony, S., , Y. Sud, , K. M. Lau, , J. Susskind, , and S. Saha, 1997: Comparison and satellite assessment of NASA/DAO and NCEP–NCAR reanalyses over tropical ocean: Atmospheric hydrology and radiation. J. Climate, 10 , 14411462.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., 1990: Surface fluxes and remote sensing of air–sea interactions. Current Theory, G. L. Geernaert and V. J. Plant, Eds., Vol. 1, Surface Waves and Fluxes, Kluwer Academic, 7–27.

    • Search Google Scholar
    • Export Citation
  • Bumke, K., , U. Karger, , and K. Uhlig, 2002: Measurements of turbulent fluxes of momentum and sensible heat over the Labrador Sea. J. Phys. Oceanogr., 32 , 410410.

    • Search Google Scholar
    • Export Citation
  • Bunker, A. F., , and L. V. Worthington, 1976: Energy exchange charts of the North Atlantic Ocean. Bull. Amer. Meteor. Soc., 57 , 670678.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., , J. C. Wyngaard, , Y. Izumi, , and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28 , 181189.

    • Search Google Scholar
    • Export Citation
  • da Silva, A. M., , C. C. Young, , and S. Levitus, 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 7, 416 pp.

    • Search Google Scholar
    • Export Citation
  • DeCosmo, J., , K. B. Katsaros, , S. D. Smith, , R. J. Anderson, , W. A. Oost, , K. Bumke, , and H. Chadwick, 1996: Air–sea exchange of water vapor and sensible heat: The Humidity Exchange Over the Sea (HEXOS) results. J. Geophys. Res., 101 , 1200112016.

    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., 1974: A review of flux-profile relationships. Bound.-Layer Meteor., 7 , 363372.

  • Fairall, C. W., , E. F. Bradley, , D. P. Rogers, , J. B. Edson, , and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for the Tropical Ocean–Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. J. Geophys. Res., 101 , 37473764.

    • Search Google Scholar
    • Export Citation
  • Garnier, E., , B. Barnier, , L. Siefridt, , and K. Béranger, 2000: Investigating the 15 year air–sea flux climatology from the ECMWF reanalysis project as a surface boundary condition for ocean models. Int. J. Climatol., 20 , 16531673.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Grachev, A. A., , C. W. Fairall, , and S. E. Larsen, 1998: On the determination of the neutral drag coefficient in the convective boundary layer. Bound.-Layer Meteor., 86 , 257278.

    • Search Google Scholar
    • Export Citation
  • Grossman, R. L., , and A. K. Betts, 1990: Air–sea interaction during an extreme cold air outbreak from the eastern coast of the United States. Mon. Wea. Rev., 118 , 324342.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., , D. H. Bromwich, , and G. J. Marshall, 2000: Artificial surface pressure trends in the NCEP–NCAR reanalysis over the Southern Ocean and Antarctica. J. Climate, 13 , 39403952.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., , E. I. F. de Bruijn, , and H-L. Pan, 1990: A high-resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118 , 15611575.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., 2001: A comparison of ECMWF, NCEP–NCAR, and SOC surface heat fluxes with moored buoy measurements in the subduction region of the Northeast Atlantic. J. Climate, 14 , 17801789.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., , E. C. Kent, , and P. K. Taylor, 1998: The Southampton Oceanography Centre (SOC) Ocean–Atmosphere Heat, Momentum and Freshwater Atlas. Southampton Oceanography Centre Rep. No. 6, Southampton Oceanography Centre, 30 pp.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., . 1999: New insights into the ocean heat budget closure problem from analysis of the SOC air–sea flux climatology. J. Climate, 12 , 28562880.

    • Search Google Scholar
    • Export Citation
  • Kader, B. A., , and A. M. Yaglom, 1990: Mean fields and fluctuation moments in unstably stratified turbulent boundary layers. J. Fluid Mech., 212 , 637662.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors. 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kuo, Y-H., , R. J. Reed, , and S. Low-Nam, 1991: Effects of surface energy fluxes during the early development and rapid intensification stages of seven explosive cyclones in the western Atlantic. Mon. Wea. Rev., 119 , 457476.

    • Search Google Scholar
    • Export Citation
  • Lab Sea Group, 1998: The Labrador Sea Deep Convection Experiment. Bull. Amer. Meteor. Soc., 79 , 20332058.

  • Large, W. G., , and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11 , 324336.

  • Large, W. G., . 1982: Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr., 12 , 464482.

  • Large, W. G., , J. Morzel, , and G. B. Crawford, 1995: Accounting for surface wave distortion of the marine wind profile in low-level ocean storms wind measurements. J. Phys. Oceanogr., 25 , 29592971.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., , K. Alverson, , and I. A. Renfrew, 2002: A reconstruction of the air–sea interaction associated with the Weddell Polynya. J. Phys. Oceanogr., 32 , 16851698.

    • Search Google Scholar
    • Export Citation
  • Olson, D. B., 1991: Rings in the ocean. Annu. Rev. Earth Planet. Sci., 91 , 283311.

  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9 , 857861.

    • Search Google Scholar
    • Export Citation
  • Raman, S., , and A. J. Riordan, 1988: The Genesis of Atlantic Lows Experiment: The planetary-boundary-layer subprogram of GALE. Bull. Amer. Meteor. Soc., 69 , 161172.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. A., 1989: A comparative study of tropical cyclones and polar lows. Polar and Arctic Lows, P. F. Twitchell, E. A. Rasmussen, and K. L. Davidson, Eds., A. Deepak Publishing, 47–80.

    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., , and G. W. K. Moore, 1999: An extreme cold air outbreak over the Labrador Sea: Roll vortices and air–sea interaction. Mon. Wea. Rev., 127 , 23792394.

    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., , P. S. Guest, , and K. Bumke, 2002: A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses. J. Phys. Oceanogr, 32 , 383400.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Rogers, W. P., 1986: Presidential commission on the Space Shuttle Challenger accident. [Available online at http://science.ksc.nasa.gov/shuttle/missions/51-1/docs/rogers-commission/table-of-contents.html.].

    • Search Google Scholar
    • Export Citation
  • Schmitz, W. J., , and M. S. McCartney, 1993: On the North Atlantic circulation. Rev. Geophys., 31 , 2949.

  • Shinoda, T., , H. Hendon, , and J. Glick, 1999: Intraseasonal surface fluxes in the tropical Western Pacific and Indian Oceans from NCEP reanalyses. Mon. Wea. Rev., 127 , 678693.

    • Search Google Scholar
    • Export Citation
  • Slutz, R. J., , S. J. Lubker, , J. D. Hiscox, , S. D. Woodruff, , R. L. Jenne, , D. H. Joseph, , P. M. Steurer, , and J. D. Elms, 1985: COADS, Comprehensive Ocean–Atmosphere Data Set, Release 1. Environmental Research Laboratory, Climate Research Program, 262 pp.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93 , 1546715472.

    • Search Google Scholar
    • Export Citation
  • Smith, S. R., , D. M. Legler, , and K. V. Verzone, 2001: Quantifying uncertainties in NCEP reanalyses using high-quality research vessel observations. J. Climate, 14 , 40624072.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., , M. F. Baumgartner, , S. A. Josey, , A. S. Fischer, , and J. C. Kindle, 1998: Atmospheric forcing in the Arabian Sea during 1994–1995: Observations and comparisons with climatology and models. Deep-Sea Res., 45 , 19611999.

    • Search Google Scholar
    • Export Citation
  • WGASF, 2001: Intercomparison and validation of ocean–atmosphere energy flux fields. Final report of the Joint WCRP/SCOR Working Group on Air–Sea Fluxes, WCRP Series Rep. No. 112, 296 pp.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., , R. J. Slutz, , R. L. Jenne, , and P. M. Steurer, 1987: A comprehensive ocean–atmosphere dataset. Bull. Amer. Meteor. Soc., 68 , 12391250.

    • Search Google Scholar
    • Export Citation
  • Xue, H., , J. M. Bane Jr., , and L. M. Goodman, 1995: Modification of the Gulf Stream through strong air–sea interaction in winter: Observations and numerical simulations. J. Phys. Oceanogr., 25 , 533557.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., , M. Zhao, , and R. E. Dickinson, 1998: Intercomparison of bulk aerodynamical algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Climate, 11 , 26282644.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 216 216 5
PDF Downloads 105 105 7

An Assessment of the Surface Turbulent Heat Fluxes from the NCEP–NCAR Reanalysis over the Western Boundary Currents

View More View Less
  • 1 Department of Physics, University of Toronto, Toronto, Ontario, Canada
  • | 2 British Antarctic Survey, Cambridge, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

With the completion of the NCEP–NCAR and ECMWF reanalyses there are now global representations of air–sea surface heat fluxes with sufficient spatial and temporal resolution to be useful in characterizing the air–sea interaction associated with individual weather systems, as well as in developing global-scale oceanic heat and moisture budgets. However, these fluxes are strongly dependent on the numerical models used, and, as a result, there is a clear need to validate them against observations. Accurate air–sea heat flux estimates require a realistic representation of the atmospheric boundary layer, and the implementation of an appropriate surface flux parameterization. Previous work at high latitudes has highlighted the shortcomings of the surface turbulent heat flux parameterization used in the NCEP–NCAR reanalysis during high wind speed conditions, especially when combined with large air–sea temperature differences. Here the authors extend this result through an examination of the air–sea heat fluxes over the western boundary currents of the North Atlantic and North Pacific Oceans. These are also regions where large transfers of heat and moisture from the ocean to the atmosphere take place. A comparison with in situ data shows that the surface layer meteorological fields are reasonably well represented in the NCEP–NCAR reanalysis, but the turbulent heat flux fields contain significant systematic errors. It is argued that these errors are associated with shortcomings in the bulk flux algorithm employed in the reanalysis. Using the NCEP–NCAR reanalysis surface layer meteorological fields and a more appropriate bulk flux algorithm, “adjusted” fields for the sensible and latent heat fluxes are presented that more accurately represent the air–sea exchange of heat and moisture over the western boundary currents.

Corresponding author address: Dr. G. W. K. Moore, Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7, Canada. Email: moore@atmosp.physics.utoronto.ca

Abstract

With the completion of the NCEP–NCAR and ECMWF reanalyses there are now global representations of air–sea surface heat fluxes with sufficient spatial and temporal resolution to be useful in characterizing the air–sea interaction associated with individual weather systems, as well as in developing global-scale oceanic heat and moisture budgets. However, these fluxes are strongly dependent on the numerical models used, and, as a result, there is a clear need to validate them against observations. Accurate air–sea heat flux estimates require a realistic representation of the atmospheric boundary layer, and the implementation of an appropriate surface flux parameterization. Previous work at high latitudes has highlighted the shortcomings of the surface turbulent heat flux parameterization used in the NCEP–NCAR reanalysis during high wind speed conditions, especially when combined with large air–sea temperature differences. Here the authors extend this result through an examination of the air–sea heat fluxes over the western boundary currents of the North Atlantic and North Pacific Oceans. These are also regions where large transfers of heat and moisture from the ocean to the atmosphere take place. A comparison with in situ data shows that the surface layer meteorological fields are reasonably well represented in the NCEP–NCAR reanalysis, but the turbulent heat flux fields contain significant systematic errors. It is argued that these errors are associated with shortcomings in the bulk flux algorithm employed in the reanalysis. Using the NCEP–NCAR reanalysis surface layer meteorological fields and a more appropriate bulk flux algorithm, “adjusted” fields for the sensible and latent heat fluxes are presented that more accurately represent the air–sea exchange of heat and moisture over the western boundary currents.

Corresponding author address: Dr. G. W. K. Moore, Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7, Canada. Email: moore@atmosp.physics.utoronto.ca

Save