• Brass, G. W., , J. R. Southam, , and W. H. Peterson, 1982: Warm saline bottow water in the ancient ocean. Nature, 296 , 620623.

  • Budyko, M. I., , and A. B. Ronov, 1979: Atmospheric evolution in the Phanerozoic. Geochem. Int., 16 , 19.

  • Haney, R. L., 1971: Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1 , 241248.

  • Haupt, B., , and D. Seidov, 2001: Warm deep-water ocean conveyor during Cretaceous time. Geology, 29 , 295298.

  • Hotinski, R. M., , K. L. Bice, , L. R. Lump, , R. G. Najjar, , and M. A. Arthur, 2001: Ocean stagnation and end-Permian anoxia. Geology, 29 , 710.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1994: Thermohaline circulation: Energetics and variability in a single-hemisphere basin model. J. Geophys. Res., 99 , 1247112485.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., , J. Luyten, , and H. M. Stommel, 1992: Multiple equilibrium states in combined thermal and saline circulation. J. Phys. Oceanogr., 22 , 231246.

    • Search Google Scholar
    • Export Citation
  • Johnson, S. J., and Coauthors. 1992: Irregular glacial interstadials recorded in a new Greenland ice core. Nature, 359 , 311313.

  • Kozur, H. W., 1998: Some aspects of the Permian–Triassic boundary (PTB) and of the possible causes for the biotic crisis around this boundary. Palaeogeogr., Palaeoclimatol., Palaeoecol., 143 , 227272.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., , and R. G. Gallimore, 1989: Pangaean climates: Mega-monsoons of the megacontinent. J. Geophys. Res., 94 , 33413358.

  • Kutzbach, J. E., , P. J. Guetter, , and W. M. Washington, 1990: Simulated circulation of an idealized ocean for Pangaean time. Paleoceanography, 5 , 299317.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., , A. J. Watson, , and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364 , 701703.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., , and K. Bryan, 1985: CO2-induced change in a coupled ocean–atmosphere model and its paleoclimatic implications. J. Geophys. Res., 90 , 1168911707.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., , and R. J. Stouffer, 1994: Multiple-century response of a coupled ocean–atmosphere model to an increase of atmospheric carbon dioxide. J. Climate, 7 , 523.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., 1989: Instabilities and multiple steady states of the thermohaline circulation. Oceanic Circulation Models: Combining Data and Dynamics, D. L. T. Anderson and J. Willebrand, Eds., Kluwer Academic Publishers, 501–511.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., . 1997: Boundary mixing and the dynamics of three-dimensional thermohaline circulations. J. Phys. Oceanogr., 27 , 17131728.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., , and J. Willebrand, 1991: Multiple equalibria of the global thermohaline circulation. J. Phys. Oceanogr., 21 , 13721385.

  • Marshall, J., , and F. Schott, 1999: Open ocean deep convection: Observations, models and theory. Rev. Geophys., 37 , 164.

  • Marshall, J., , C. Hill, , L. Perelman, , and A. Adcroft, 1997a: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102 , 57335752.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , A. Adcroft, , C. Hill, , L. Perelman, , and C. Heisey, 1997b: A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 , 57535766.

    • Search Google Scholar
    • Export Citation
  • Munk, M., , and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res., 45 , 19772010.

  • Pierce, D. W., , T. P. Barnett, , and U. Mikolajewicz, 1995: Competing roles of heat and freshwater flux in forcing thermohaline oscillations. J. Phys. Oceanogr., 25 , 20462064.

    • Search Google Scholar
    • Export Citation
  • Railsback, L. B., , S. C. Ackerly, , T. F. Anderson, , and J. L. Cisne, 1990: Palaeontological and isotope evidence for warm saline deep waters in Ordovician oceans. Nature, 343 , 156159.

    • Search Google Scholar
    • Export Citation
  • Rooth, C., 1982: Hydrology and ocean circulation. Progress in Oceanography, Vol. 11, Pergamon, 131–149.

  • Ruddick, B., , and L. Q. Zhang, 1996: Qualitative behavior and nonoscillation of Stommel's thermohaline box model. J. Climate, 9 , 27682777.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , Y. Kushnir, , and M. A. Cane, 1995: On heat flux boundary conditions for ocean models. J. Phys. Oceanogr., 25 , 32193230.

  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13 , 224230.

  • Taylor, E. L., , T. N. Taylor, , and N. R. Cuneo, 1992: The present is not the key to the past: A polar forest from the Permian of Antarctica. Science, 257 , 16571677.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., , K. L. Polzin, , and R. Schmitt, 1994: Estimates of diapycnal mixing in the abyssal ocean. Science, 264 , 11201123.

  • Weaver, A. J., , and E. S. Sarachik, 1991a: The role of mixed boundary conditions in numerical models of the ocean's climate. J. Phys. Oceanogr., 21 , 14701493.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., . 1991b: Evidence for decadal variability in an ocean general circulation model: An advective mechanism. Atmos.–Ocean, 29 , 197231.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., , J. Marotzke, , P. F. Cummins, , and E. S. Sarachik, 1993: Stability and variability of the thermohaline circulation. J. Phys. Oceanogr., 23 , 3960.

    • Search Google Scholar
    • Export Citation
  • Welander, P., 1982: A simple heat–salt oscillator. Dyn. Atmos. Oceans, 6 , 233242.

  • Winton, M., 1993: Deep decoupling oscillations of the oceanic thermohaline circulation. Ice in the Climate System, NATO ASI Series, Vol. 112, Springer Verlag, 417–432.

    • Search Google Scholar
    • Export Citation
  • Winton, M., , and E. S. Sarachik, 1993: Thermohaline oscillations induced by strong steady salinity forcing of ocean general circulation models. J. Phys. Oceanogr., 23 , 13891410.

    • Search Google Scholar
    • Export Citation
  • Wright, D. G., , and T. F. Stocker, 1991: A zonally averaged model for the thermohaline circulation. Part I: Model development and flow dynamics. J. Phys. Oceanogr., 21 , 17131724.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., , M. Follows, , J. P. Grotzinger, , and J. Marshall, 2001: Could the late Permian deep ocean have been anoxic? Paleoceanography, 16 , 317329.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., , R. J. Greatbatch, , and C. A. Lin, 1993: A reexamination of the polar halocline catastrophe and implications for coupled ocean–atmosphere modeling. J. Phys. Oceanogr., 23 , 287299.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 176 176 2
PDF Downloads 32 32 1

Mechanisms of Thermohaline Mode Switching with Application to Warm Equable Climates

View More View Less
  • 1 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A three-box model of haline and thermal mode overturning is developed to study thermohaline oscillations found in a number of ocean general circulation models and that might have occurred in warm equable paleoclimates. By including convective adjustment modified to represent the localized nature of deep convection, the box model shows that a steady haline mode circulation is unstable. For certain ranges of freshwater forcing/vertical diffusivity, a self-sustained oscillatory circulation is found in which haline–thermal mode switching occurs with a period of centuries to millennia. It is found that mode switching is most likely to occur in warm periods of earth's history with, relative to the present climate, a reduced Pole&ndash=uator temperature gradient, an enhanced hydrological cycle, and somewhat smaller values of oceanic diffusivities.

Current affiliation: Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey

Corresponding author address: Dr. Rong Zhang, Geophysical Fluid Dynamics Laboratory, P.O. Box 308, Princeton University, Princeton, NJ 08542 Email: rzhang@splash.princeton.edu

Abstract

A three-box model of haline and thermal mode overturning is developed to study thermohaline oscillations found in a number of ocean general circulation models and that might have occurred in warm equable paleoclimates. By including convective adjustment modified to represent the localized nature of deep convection, the box model shows that a steady haline mode circulation is unstable. For certain ranges of freshwater forcing/vertical diffusivity, a self-sustained oscillatory circulation is found in which haline–thermal mode switching occurs with a period of centuries to millennia. It is found that mode switching is most likely to occur in warm periods of earth's history with, relative to the present climate, a reduced Pole&ndash=uator temperature gradient, an enhanced hydrological cycle, and somewhat smaller values of oceanic diffusivities.

Current affiliation: Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey

Corresponding author address: Dr. Rong Zhang, Geophysical Fluid Dynamics Laboratory, P.O. Box 308, Princeton University, Princeton, NJ 08542 Email: rzhang@splash.princeton.edu

Save