• Alexander, M. A., C. Deser, and M. S. Timlin, 1999: The reemergence of SST anomalies in the North Pacific Ocean. J. Climate, 12 , 24192433.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15 , 22052231.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., 1981: On the nature and causes of large-scale thermal variability in the central North Pacific Ocean. J. Phys. Oceanogr., 11 , 887904.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., and R. C. J. Somerville, 1983: Advances in short-term climate prediction. Rev. Geophys., 21 , 10961102.

  • Barnett, T. P., and Coauthors. 1994: Forecasting global ENSO-related climate anomalies. Tellus, 46A , 381397.

  • Barnett, T. P., D. W. Pierce, M. Latif, D. Dommenget, and R. Saravanan, 1999: Interdecadal interactions between the tropics and midlatitudes in the Pacific basin. Geophys. Res. Lett., 26 , 615618.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., 1995: Idealized models of intrinsic midlatitude atmosphere–ocean interaction. Ph.D. thesis, Department of Atmosphere Science, University of Washington, 189 pp.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55 , 477493.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., U. S. Bhatt, and M. A. Alexander, 1995: A modeling study of the interannual variability in the wintertime North Atlantic Ocean. J. Climate, 8 , 30673083.

    • Search Google Scholar
    • Export Citation
  • Bhatt, U. S., M. A. Alexander, D. S. Battisti, D. D. Houghton, and L. M. Keller, 1998: Atmosphere–ocean interaction in the North Atlantic: Near-surface climate variability. J. Climate, 11 , 16151632.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1959: The recent warming of the North Atlantic. The Atmosphere and Sea in Motion, B. Bolin, Ed., Rockefeller Institute Press and Oxford University Press, 65–73.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., . 1964: Atlantic air–sea interaction. Advances in Geophysics, Vol. 10, Academic Press, 1–82.

  • Bladé, I., 1997: The influence of midlatitude ocean–atmosphere coupling on the low-frequency variability of a GCM. Part I: No tropical SST forcing. J. Climate, 10 , 20872106.

    • Search Google Scholar
    • Export Citation
  • Bladé, I., . 1999: The influence of midlatitude ocean–atmosphere coupling on the low-frequency variability of a GCM. Part II: Interannual variability induced by tropical SST forcing. J. Climate, 12 , 2145.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and D. S. Battisti, 2000: An interpretation of the results from atmospheric general circulation models forced by the time history of the observed sea surface temperature distribution. Geophys. Res. Lett., 27 , 767770.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5 , 541560.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992a: Variability of latent and sensible heat fluxes estimated using bulk formulas. Atmos.–Ocean, 30 , 142.

  • Cayan, D. R., . 1992b: Latent and sensible heat-flux anomalies over the northern oceans—The connection to monthly atmospheric circulation. J. Climate, 5 , 354369.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., . 1992c: Latent and sensible heat-flux anomalies over the northern oceans—Driving the sea-surface temperature. J. Phys. Oceanogr., 22 , 859881.

    • Search Google Scholar
    • Export Citation
  • Cheng, X., G. Nitsche, and J. M. Wallace, 1995: Robustness of low-frequency circulation patterns derived from EOF and rotated EOF analysis. J. Climate, 8 , 17091713.

    • Search Google Scholar
    • Export Citation
  • Chervin, R. M., and S. H. Schneider, 1976: On determining the statistical significance of climate experiments with general circulation models. J. Atmos. Sci., 33 , 405412.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 1999: Influence of the North Atlantic SST on the atmospheric circulation. Geophys. Res. Lett., 26 , 29692972.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and J. Marshall, 2000: On the interpretation of AGCMs response to prescribed time-varying SST anomalies. Geophys. Res. Lett., 27 , 19271930.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15 , 606623.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6 , 249266.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., . 1978: Predictability of sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 8 , 233246.

  • Delworth, T. L., 1996: North Atlantic interannual variability in a coupled ocean–atmosphere model. J. Climate, 9 , 23562375.

  • Deser, C., and M. L. Blackmon, 1993: Surface climate variations over the North Atlantic Ocean during winter—1900–1989. J. Climate, 6 , 17431753.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. S. Timlin, 1997: Atmosphere–ocean interaction on weekly timescales in the North Atlantic and Pacific. J. Climate, 10 , 393408.

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., F. Molteni, and T. N. Palmer, 1994: Impact of localized tropical and extratropical SST anomalies in ensembles of seasonal GCM integrations. Quart. J. Roy. Meteor. Soc., 120 , 16131645.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves and air–sea feedback in the middle latitudes. Rev. Geophys., 23 , 357390.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. 2. Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29 , 289305.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and R. W. Reynolds, 1983: Testing a dynamical model for midlatitude sea surface temperature anomalies. J. Phys. Oceanogr., 13 , 11311145.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., A. Czaja, and B. L'Heveder, 1998: Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models. J. Climate, 11 , 23102324.

    • Search Google Scholar
    • Export Citation
  • Gallimore, R. G., 1995: Simulated ocean–atmosphere interaction in the North Pacific from a GCM coupled to a constant-depth mixed layer. J. Climate, 8 , 17211737.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., 1992: AMIP: The Atmospheric Model Intercomparison Project. PCMDI 7, Lawrence Livermore National Laboratory, Livermore, CA, 17 pp.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., and P. P. Niiler, 1973: The theory of the seasonal variability in the ocean. Deep-Sea Res., 20 , 141177.

  • Graham, N. E., T. P. Barnett, and R. Wilde, 1994: On the roles of tropical and midlatitude SSTs in forcing interannual to interdecadal variability in the winter Northern Hemisphere circulation. J. Climate, 7 , 14161441.

    • Search Google Scholar
    • Export Citation
  • Gu, D. F., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275 , 805807.

    • Search Google Scholar
    • Export Citation
  • Hall, N. M. J., J. Derome, and H. Lin, 2001: The extratropical signal generated by a midlatitude SST anomaly. Part I: Sensitivity at equilibrium. J. Climate, 14 , 20352053.

    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1985: Midlatitude sea-surface temperature anomalies—A numerical hindcast. J. Phys. Oceanogr., 15 , 787799.

  • Harzallah, A., and R. Sadourny, 1995: Internal versus SST-forced atmospheric variability as simulated by an atmospheric general circulation model. J. Climate, 8 , 474495.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical atmosphere: Theory. Large Scale Dynamical Processes in the Atmosphere, R. P. Pearce and B. J. Hoskins, Eds., Academic Press, 127–168.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and D. L. Hartmann, 1982: Stationary waves on a sphere—Sensitivity to thermal feedback. J. Atmos. Sci., 39 , 19061920.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3d ed. Academic Press, 511 pp.

  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38 , 11791196.

    • Search Google Scholar
    • Export Citation
  • Junge, M. M., and T. W. N. Haine, 2001: Mechanisms of North Atlantic wintertime sea surface temperature anomalies. J. Climate, 14 , 45604572.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline, II. Tellus, 19 , 98106.

  • Kumar, A., and M. P. Hoerling, 1995: Prospects and limitations of seasonal atmospheric GCM predictions. Bull. Amer. Meteor. Soc., 76 , 335345.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7 , 141157.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., and N. C. Lau, 1992: The general circulation model response to a North Pacific SST anomaly: Dependence on timescale and pattern polarity. J. Climate, 5 , 271283.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., and I. M. Held, 1996: Equilibrium atmospheric response to North Atlantic SST anomalies. J. Climate, 9 , 12081220.

  • Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266 , 634637.

    • Search Google Scholar
    • Export Citation
  • Latif, M., . 1996: Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J. Climate, 9 , 24072423.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., 1985: Modeling the seasonal dependence of the atmospheric response to observed El Niños in 1962–76. Mon. Wea. Rev., 113 , 19701996.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and M. J. Nath, 1991: Variability of the baroclinic and barotropic transient eddy forcing associated with monthly changes in the midlatitude storm tracks. J. Atmos. Sci., 48 , 25892613.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., . 1994: A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere–ocean system. J. Climate, 7 , 11841207.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., . 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9 , 20362057.

    • Search Google Scholar
    • Export Citation
  • Luksch, U., and H. von Storch, 1992: Modeling the low-frequency sea surface temperature variability in the North Pacific. J. Climate, 5 , 893906.

    • Search Google Scholar
    • Export Citation
  • Lunkeit, F., and Y. von Detten, 1997: The linearity of the atmospheric response to North Atlantic sea surface temperature anomalies. J. Climate, 10 , 30033014.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 1976: Estimates of the natural variability of time-averaged sea-level pressure. Mon. Wea. Rev., 104 , 942952.

  • Madden, R. A., . 1983: The effect of the interference of traveling and stationary waves on time variations of the large-scale circulation. J. Atmos. Sci., 40 , 11101125.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1996: Low-frequency variability of surface air temperature in a 1000-year integration of a coupled atmosphere–ocean–land surface model. J. Climate, 9 , 376393.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., H. Johnson, and J. Goodman, 2001: A study of the interaction of the North Atlantic Oscillation with ocean circulation. J. Climate, 14 , 13991421.

    • Search Google Scholar
    • Export Citation
  • Mehta, V. M., M. J. Suarez, J. V. Manganello, and T. L. Delworth, 2000: Oceanic influence on the North Atlantic Oscillation and associated Northern Hemisphere climate variations: 1959–1993. Geophys. Res. Lett., 27 , 121124.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., G. Lin, and T. Yamagata, 1997: Decadal climate variability in the North Pacific during the recent decades. Bull. Amer. Meteor. Soc., 78 , 22152225.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1959: Recent seasonal interaction between North Pacific waters and the overlying atmospheric circulation. J. Geophys. Res., 64 , 631646.

    • Search Google Scholar
    • Export Citation
  • Namias, J., . 1965a: Macroscopic association between monthly mean sea-surface temperature and overlying winds. J. Geophys. Res., 70 , 23072318.

    • Search Google Scholar
    • Export Citation
  • Namias, J., . 1965b: Short period climatic fluctuations. Science, 147 , 696706.

  • Namias, J., . 1969: Seasonal interactions between the North Pacific Ocean and the atmosphere during the 1960s. Mon. Wea. Rev., 97 , 173192.

    • Search Google Scholar
    • Export Citation
  • Namias, J., . 1972: Experiments in objectively predicting some atmospheric and oceanic variables for the winter of 1971–72. J. Appl. Meteor., 11 , 11641174.

    • Search Google Scholar
    • Export Citation
  • Namias, J., and A. M. Born, 1970: Temporal coherence in North Pacific sea surface temperature patterns. J. Geophys. Res., 75 , 59525955.

    • Search Google Scholar
    • Export Citation
  • Namias, J., and D. R. Cayan, 1981: Large-scale air–sea interactions and short period climate fluctuations. Science, 214 , 869876.

  • Namias, J., X. Yuan, and D. R. Cayan, 1988: Persistence of North Pacific sea surface temperature and atmospheric flow patterns. J. Climate, 1 , 682703.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F. F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103C , 1426114290.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., and E. B. Kraus, 1977: One-dimensional models of the upper ocean. Modeling and Prediction of the Upper Layers of the Ocean, E. B. Kraus, Ed., Pergamon, 143–172.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1995: The influence of north-west Atlantic sea surface temperature: An unplanned experiment. Weather, 50 , 413419.

  • Palmer, T. N., and Z. Sun, 1985: A modeling and observational study of the relationship between sea-surface temperature in the northwest Atlantic and the atmospheric general-circulation. Quart. J. Roy. Meteor. Soc., 111 , 947975.

    • Search Google Scholar
    • Export Citation
  • Peng, S., and J. S. Whitaker, 1999: Mechanisms determining the atmospheric response to midlatitude SST anomalies. J. Climate, 12 , 13931408.

    • Search Google Scholar
    • Export Citation
  • Peng, S., and W. A. Robinson, 2001: Relationships between atmospheric internal variability and the responses to an extratropical SST anomaly. J. Climate, 14 , 29432959.

    • Search Google Scholar
    • Export Citation
  • Peng, S., A. Mysak, H. Ritchie, J. Derome, and B. Dugas, 1995: The difference between early and middle winter atmospheric response to sea surface temperature anomalies in the northwest Atlantic. J. Climate, 8 , 137157.

    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and M. P. Hoerling, 1997: The modeled atmospheric response to midlatitude SST anomalies and its dependence on background circulation states. J. Climate, 10 , 971987.

    • Search Google Scholar
    • Export Citation
  • Peng, S., and S. Li, 2002: North Atlantic SST forcing of the NAO and relationships with intrinsic hemispheric variability. Geophys. Res. Lett., 29 (8), 117 (1–4).

    • Search Google Scholar
    • Export Citation
  • Pitcher, E. J., M. L. Blackmon, G. T. Bates, and S. Munoz, 1988: The effect of North Pacific sea surface temperature anomalies on the January climate of a general circulation model. J. Atmos. Sci., 45 , 172188.

    • Search Google Scholar
    • Export Citation
  • Ratcliffe, R. A. S., and R. Murray, 1970: New lag associations between North Atlantic sea temperatures and European pressure applied to long-range weather forecasting. Quart. J. Roy. Meteor. Soc., 96 , 226246.

    • Search Google Scholar
    • Export Citation
  • Roads, J. O., 1989: Linear and nonlinear response to midlatitude surface temperature anomalies. J. Climate, 2 , 10141040.

  • Robertson, A. W., C. R. Mechoso, and Y. J. Kim, 2000: The influence of Atlantic sea surface temperature anomalies on the North Atlantic oscillation. J. Climate, 13 , 122138.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., D. P. Rowell, and C. K. Folland, 1999: Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature, 398 , 320323.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors. 1992: Simulation of the present-day climate with the ECHAM model: Impact of model physics and resolution. MPI Rep. 93, 171 pp. [Available from MPI für Meteorologie, Bundesstr. 55, 20146 Hamburg, Germany.].

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors. 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. MPI Rep. 218, 90 pp. [Available from MPI für Meteorologie, Bundesstr. 55, 20146 Hamburg, Germany.].

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 1998: Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulations. J. Climate, 11 , 109120.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., 1998: Atmospheric low-frequency variability and its relationship to midlatitude SST variability: Studies using the NCAR Climate System Model. J. Climate, 11 , 13861404.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., and J. C. McWilliams, 1998: Advective ocean–atmosphere interaction: An analytical stochastic model with implications for decadal variability. J. Climate, 11 , 165188.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., G. Danabasoglu, S. C. Doney, and J. C. McWilliams, 2000: Decadal variability and predictability in the midlatitude ocean–atmosphere system. J. Climate, 13 , 10731097.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., and J. L. Kinter, 1994: An examination of internally generated variability in long climate simulations. Climate Dyn., 10 , 181204.

    • Search Google Scholar
    • Export Citation
  • Seager, R., M. B. Blumenthal, and Y. Kushnir, 1995: An advective atmospheric mixed-layer model for ocean modeling purposes—Global simulation of surface heat fluxes. J. Climate, 8 , 19511964.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, M. Visbeck, N. Naik, J. Miller, G. Krahmann, and H. Cullen, 2000: Causes of Atlantic Ocean climate variability between 1958 and 1998. J. Climate, 13 , 28452862.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. H. Naik, M. A. Cane, and J. Miller, 2001: Wind-driven shifts in the latitude of the Kuroshio–Oyashio extension and generation of SST anomalies on decadal timescales. J. Climate, 14 , 42494265.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1983: Comments on “natural variability and predictability.”. Mon. Wea. Rev., 111 , 581585.

  • Ting, M., 1991: The stationary wave response to a midlatitude SST anomaly in an idealized GCM. J. Atmos. Sci., 48 , 12491275.

  • Ting, M., and S. Peng, 1995: Dynamics of early and middle winter atmospheric responses to northwest Atlantic SST anomalies. J. Climate, 8 , 22392254.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N. C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103C , 1429114324.

    • Search Google Scholar
    • Export Citation
  • Valdes, P. J., and B. J. Hoskins, 1989: Linear stationary wave simulations of the time-mean climatological flow. J. Atmos. Sci., 46 , 25092527.

    • Search Google Scholar
    • Export Citation
  • Venzke, S., M. R. Allen, R. T. Sutton, and D. P. Rowell, 1999: The atmospheric response over the North Atlantic to decadal changes in sea surface temperature. J. Climate, 12 , 25622584.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and H. A. Kruse, 1985: The extra-tropical atmospheric response to El Niño events—A multivariate significance analysis. Tellus, 37A , 361377.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and Q-R. Jiang, 1987: On the observed structure of interannual variability of the atmosphere/ocean climate system. Atmospheric and Oceanic Variability, H. Cattle, Ed., Royal Meteorological Society, 17–43.

    • Search Google Scholar
    • Export Citation
  • Walter, K., U. Luksch, and K. Fraedrich, 2001: A response climatology of idealized midlatitude thermal forcing experiments with and without a storm track. J. Climate, 14 , 467484.

    • Search Google Scholar
    • Export Citation
  • Ward, M. N., and A. Navarra, 1997: Pattern analysis of SST-forced variability in ensemble GCM simulations: Examples over Europe and the tropical Pacific. J. Climate, 10 , 22102220.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 1999: Tropical-extratropical connection in the Atlantic atmosphere–ocean variability. Geophys. Res. Lett., 26 , 22472250.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., 1977: Empirical orthogonal analysis of Atlantic Ocean surface temperature. Quart. J. Roy. Meteor. Soc., 103 , 467478.

  • Whitaker, J. S., and P. D. Sardeshmukh, 1998: A linear theory of extratropical synoptic eddy statistics. J. Atmos. Sci., 55 , 237258.

  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like decade-to-century scale variability: 1900–93. J. Climate, 10 , 10041020.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., 1987: Statistical considerations for climate experiments 2. Multivariate tests. J. Climate Appl. Meteor., 26 , 477487.

  • Zwiers, F. W., and V. V. Kharin, 1998: Changes in the extremes of the climate simulated by CCC GCM2 under CO2 doubling. J. Climate, 11 , 22002222.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., X. L. Wang, and J. Sheng, 2000: Effects of specifying bottom boundary conditions in an ensemble of atmospheric GCM simulations. J. Geophys. Res., 105D , 72957315.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1504 465 33
PDF Downloads 1196 421 36

Atmospheric GCM Response to Extratropical SST Anomalies: Synthesis and Evaluation

Y. KushnirLamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Y. Kushnir in
Current site
Google Scholar
PubMed
Close
,
W. A. RobinsonDepartment of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by W. A. Robinson in
Current site
Google Scholar
PubMed
Close
,
I. BladéLaboratori d'Enginyeria Maritima, Universitat Politécnia de Catalunya, Barcelona, Spain

Search for other papers by I. Bladé in
Current site
Google Scholar
PubMed
Close
,
N. M. J. HallLaboratoire des Ecoulements Geophysique et Industriels, Grenoble, France

Search for other papers by N. M. J. Hall in
Current site
Google Scholar
PubMed
Close
,
S. PengNOAA–CIRES Climate Diagnostics Center, University of Colorado, Boulder, Colorado

Search for other papers by S. Peng in
Current site
Google Scholar
PubMed
Close
, and
R. SuttonCentre for Global Atmospheric Modeling, Department of Meteorology, University of Reading, Reading, Berkshire, United Kingdom

Search for other papers by R. Sutton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The advances in our understanding of extratropical atmosphere–ocean interaction over the past decade and a half are examined, focusing on the atmospheric response to sea surface temperature anomalies. The main goal of the paper is to assess what was learned from general circulation model (GCM) experiments over the recent two decades or so. Observational evidence regarding the nature of the interaction and dynamical theory of atmospheric anomalies forced by surface thermal anomalies is reviewed. Three types of GCM experiments used to address this problem are then examined: models with fixed climatological conditions and idealized, stationary SST anomalies; models with seasonally evolving climatology forced with realistic, time-varying SST anomalies; and models coupled to an interactive ocean. From representative recent studies, it is argued that the extratropical atmosphere does respond to changes in underlying SST although the response is small compared to internal (unforced) variability. Two types of interactions govern the response. One is an eddy-mediated process, in which a baroclinic response to thermal forcing induces and combines with changes in the position or strength of the storm tracks. This process can lead to an equivalent barotropic response that feeds back positively on the ocean mixed layer temperature. The other is a linear, thermodynamic interaction in which an equivalent-barotropic low-frequency atmospheric anomaly forces a change in SST and then experiences reduced surface thermal damping due to the SST adjustment. Both processes contribute to an increase in variance and persistence of low-frequency atmospheric anomalies and, in fact, may act together in the natural system.

Corresponding author address: Dr. Yochanan Kushnir, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964. Email: kushnir@ldeo.columbia.edu

Abstract

The advances in our understanding of extratropical atmosphere–ocean interaction over the past decade and a half are examined, focusing on the atmospheric response to sea surface temperature anomalies. The main goal of the paper is to assess what was learned from general circulation model (GCM) experiments over the recent two decades or so. Observational evidence regarding the nature of the interaction and dynamical theory of atmospheric anomalies forced by surface thermal anomalies is reviewed. Three types of GCM experiments used to address this problem are then examined: models with fixed climatological conditions and idealized, stationary SST anomalies; models with seasonally evolving climatology forced with realistic, time-varying SST anomalies; and models coupled to an interactive ocean. From representative recent studies, it is argued that the extratropical atmosphere does respond to changes in underlying SST although the response is small compared to internal (unforced) variability. Two types of interactions govern the response. One is an eddy-mediated process, in which a baroclinic response to thermal forcing induces and combines with changes in the position or strength of the storm tracks. This process can lead to an equivalent barotropic response that feeds back positively on the ocean mixed layer temperature. The other is a linear, thermodynamic interaction in which an equivalent-barotropic low-frequency atmospheric anomaly forces a change in SST and then experiences reduced surface thermal damping due to the SST adjustment. Both processes contribute to an increase in variance and persistence of low-frequency atmospheric anomalies and, in fact, may act together in the natural system.

Corresponding author address: Dr. Yochanan Kushnir, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964. Email: kushnir@ldeo.columbia.edu

Save