High-Cloud Horizontal Inhomogeneity and Solar Albedo Bias

Betty Carlin Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada

Search for other papers by Betty Carlin in
Current site
Google Scholar
PubMed
Close
,
Qiang Fu Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada, and Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Qiang Fu in
Current site
Google Scholar
PubMed
Close
,
Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada

Search for other papers by Ulrike Lohmann in
Current site
Google Scholar
PubMed
Close
,
Gerald G. Mace Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Gerald G. Mace in
Current site
Google Scholar
PubMed
Close
,
Kenneth Sassen Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Kenneth Sassen in
Current site
Google Scholar
PubMed
Close
, and
Jennifer M. Comstock Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Jennifer M. Comstock in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

High ice cloud horizontal inhomogeneity is examined using optical depth retrievals from four midlatitude datasets. Three datasets include ice cloud microphysical profiles derived from millimeter cloud radar at the Southern Great Plains Atmospheric Radiation Measurement site in Oklahoma. A fourth dataset combines lidar and midinfrared radiometry (LIRAD), and is from the Facility for Atmospheric Remote Sensing at the University of Utah, Salt Lake City, Utah. Plane-parallel homogeneous (PPH) calculations of domain-averaged solar albedo for these four datasets are compared to independent column approximation (ICA) results. A solar albedo bias up to 25% is found over a low reflective surface at a high solar zenith angle. A spherical solar albedo bias as high as 11% is shown. The gamma-weighted radiative transfer (GWRT) scheme is shown to be an effective correction for the solar albedo bias suitable for GCM applications. The GWRT result was, in all cases, within 1–2 W m−2 of the ICA outgoing solar flux. The GWRT requires a parameterization of the standard deviation of cloud optical depth. It is suggested that the domain-averaged cloud optical depth and ice water path together can be used in a parameterization to account for 80% of the standard deviation in optical depth.

Corresponding author address: Betty Carlin, Atmospheric Science Program, Department of Physics, Dalhousie University, Halifax, NS B3H 3J5, Canada. Email: bcarlin@atm.dal.ca

Abstract

High ice cloud horizontal inhomogeneity is examined using optical depth retrievals from four midlatitude datasets. Three datasets include ice cloud microphysical profiles derived from millimeter cloud radar at the Southern Great Plains Atmospheric Radiation Measurement site in Oklahoma. A fourth dataset combines lidar and midinfrared radiometry (LIRAD), and is from the Facility for Atmospheric Remote Sensing at the University of Utah, Salt Lake City, Utah. Plane-parallel homogeneous (PPH) calculations of domain-averaged solar albedo for these four datasets are compared to independent column approximation (ICA) results. A solar albedo bias up to 25% is found over a low reflective surface at a high solar zenith angle. A spherical solar albedo bias as high as 11% is shown. The gamma-weighted radiative transfer (GWRT) scheme is shown to be an effective correction for the solar albedo bias suitable for GCM applications. The GWRT result was, in all cases, within 1–2 W m−2 of the ICA outgoing solar flux. The GWRT requires a parameterization of the standard deviation of cloud optical depth. It is suggested that the domain-averaged cloud optical depth and ice water path together can be used in a parameterization to account for 80% of the standard deviation in optical depth.

Corresponding author address: Betty Carlin, Atmospheric Science Program, Department of Physics, Dalhousie University, Halifax, NS B3H 3J5, Canada. Email: bcarlin@atm.dal.ca

Save
  • Ackerman, T. P., K. N. Liou, F. P. Valero, and L. Pfister, 1988: Heating rates in tropical anvils. J. Atmos. Sci., 45 , 16061623.

  • Barker, H. W., 1996a: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part III: Methodology and homogeneous biases. J. Atmos. Sci., 53 , 22892303.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., 1996b: Estimating cloud field albedo using one-dimensional series of optical depth. J. Atmos. Sci., 53 , 28262837.

  • Barker, H. W., and Q. Fu, 1999: Modeling domain-averaged solar fluxes for an evolving tropical cloud system. Atmos. Oceanic Opt., 12 , 211217.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., 2000: Assessment and optimization of the gamma-weighted two-stream approximation. J. Atmos. Sci., 57 , 11811188.

  • Barker, H. W., B. A. Wielicki, and L. Parker, 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part II: Validation using satellite data. J. Atmos. Sci., 53 , 23042316.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., G. L. Stephens, and Q. Fu, 1999: The sensitivity of domain-averaged solar fluxes to assumptions about cloud geometry. Quart. J. Roy. Meteor. Soc., 125 , 21272152.

    • Search Google Scholar
    • Export Citation
  • Briegleb, B., and V. Ramanathan, 1982: Spectral and diurnal variations in clear sky planetary albedo. J. Appl. Meteor., 21 , 11601171.

    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., W. Ridgeway, W. J. Wiscombe, T. L. Bell, and J. B. Snider, 1994a: The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51 , 24342455.

    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., S. Gollmer, and Harshvardhan, 1994b: Independent pixel and Monte Carlo estimates of stratocumulus albedo. J. Atmos. Sci., 51 , 37763790.

    • Search Google Scholar
    • Export Citation
  • Cairns, B., A. A. Lacis, and B. E. Carlson, 2000: Absorption within inhomogeneous clouds and its parameterization in general circulation models. J. Atmos. Sci., 57 , 700714.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., and K. Sassen, 2001: Retrieval of cirrus cloud radiative and backscattering properties using combined lidar and infrared radiometer (LIRAD) measurements. J. Atmos. Oceanic Technol., 18 , 16581673.

    • Search Google Scholar
    • Export Citation
  • Considine, G., J. A. Curry, and B. Wielicki, 1997: Modeling cloud fraction and horizontal variability in marine boundary layer clouds. J. Geophys. Res., 102 , 1351713525.

    • Search Google Scholar
    • Export Citation
  • Evans, K. F., 1993: Two-dimensional radiative transfer in cloudy atmospheres: The spherical harmonic, spatial grid method. J. Atmos. Sci., 50 , 31113124.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9 , 20582082.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49 , 21392156.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50 , 20082025.

  • Fu, Q., P. Yang, and W. B. Sun, 1998: An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Climate, 11 , 22232237.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., B. Carlin, and G. Mace, 2000a: Cirrus horizontal inhomogeneity and OLR bias. Geophys. Res. Lett., 27 , 33413344.

  • Fu, Q., M. Cribb, H. Barker, S. Krueger, and A. Grossman, 2000b: Cloud geometry effects on atmospheric solar absorption. J. Atmos. Sci., 57 , 11561168.

    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., W. B. Rossow, and S. G. Warren, 2001: ISCCP cloud properties associated with standard cloud types identified in individual surface observations. J. Climate, 14 , 1128.

    • Search Google Scholar
    • Export Citation
  • Harshvardan, and D. A. Randall, 1985: Comments on “The parameterization of radiation for numerical weather prediction and climate models.”. Mon. Wea. Rev., 113 , 18321833.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., M. E. Ockhart-Bell, and M. L. Michelsen, 1992: The effect of cloud type on earth's energy balance: Global analysis. J. Climate, 5 , 12811304.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and J. Iaquinta, 2000: Cirrus crystal terminal velocities. J. Atmos. Sci., 57 , 916938.

  • Lohmann, U., and E. Roeckner, 1995: Influence of cirrus cloud radiative forcing on climate and climate sensitivity in a general circulation model. J. Geophys. Res., 100 , 1630516323.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., T. P. Ackerman, P. Minnis, and D. F. Young, 1998: Cirrus layer microphysical properties derived from surface-based millimeter radar and infrared interferometer data. J. Geophys. Res., 103 , 2320723216.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., B. W. Orr, R. A. Kropfli, and J. B. Snider, 1994: Retrieval of vertical profiles of cirrus cloud microphysical parameters from Doppler radar and infrared radiometer measurements. J. Appl. Meteor., 33 , 617626.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53 , 617626.

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and R. Davies, 1998a: Plane parallel biases from satellite observation. Part I: Dependence on resolution and other factors. J. Climate, 11 , 919932.

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., 1998b: Plane parallel biases from satellite observation. Part II: Parameterization for bias removal. J. Climate, 11 , 933944.

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and H. W. Barker, 1999: Accounting for subgrid-scale cloud variability in a multi-layer 1D solar radiative transfer algorithm. Quart. J. Roy. Meteor. Soc., 125 , 301330.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., S. A. McFarlane, and S. A. Klein, 1999: Albedo bias and the horizontal variability of clouds in subtropical marine boundary layers: Observation from ships and satellites. J. Geophys. Res., 104 , 61836191.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., 1973: Lidar and radiometric observations of cirrus clouds. J. Atmos. Sci., 30 , 11911204.

  • Pomroy, H. R., and A. J. Illingworth, 2000: Ice cloud inhomogeneity: Quantifying bias in emissivity from radar observations. Geophys. Res. Lett., 27 , 21012104.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 2001: Cirrus clouds: A modern perspective. Cirrus, D. Lynch et al., Eds., Oxford University Press, 11–40.

  • Sassen, K., and B. S. Cho, 1992: Subvisual/thin cirrus dataset for satellite verification and climatological research. J. Appl. Meteor., 31 , 12751285.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and J. M. Comstock, 2001: A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part III: Radiative properties. J. Atmos. Sci., 58 , 21132127.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., J. M. Barnett, Z. Wang, and G. G. Mace, 2001: Cloud and aerosol research capabilities at FARS: The facility for atmospheric remote sensing. Bull. Amer. Meteor. Soc., 82 , 11191138.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., X. L. Ma, S. A. Ackerman, H. E. Revercomb, and R. O. Knuteson, 1993: Remote sensing cloud properties from high spectral resolution infrared observations. J. Atmos. Sci., 50 , 17081720.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1985: Reply. Mon. Wea. Rev., 113 , 18341835.

  • Stephens, G. L., 1988: Radiative transfer through arbitrary shaped optical media. Part I: A general method of solution. J. Atmos. Sci., 45 , 18181836.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., S-C. Tsay, P. W. Stackhouse, and P. J. Flateau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback. J. Atmos. Sci., 47 , 17421753.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1996: An extension of cloud-radiation parameterization in the ECMWF model: The representation of subgrid-scale variations of optical depth. Mon. Wea. Rev., 124 , 745750.

    • Search Google Scholar
    • Export Citation
  • Weinman, J. A., and P. N. Swarztauber, 1968: Albedo of a stratified medium of isotropically scattering particles. J. Atmos. Sci., 25 , 497501.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 377 71 6
PDF Downloads 150 51 8