CO2-Induced Changes in Interannual Temperature and Precipitation Variability in 19 CMIP2 Experiments

Jouni Räisänen Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden

Search for other papers by Jouni Räisänen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

CO2-induced changes in the interannual variability of monthly surface air temperature and precipitation are studied using 19 model experiments participating in the second phase of the Coupled Model Intercomparison Project (CMIP2). The magnitude of variability in the control runs appears generally reasonable, but it varies a great deal between different models, almost all of which overestimate temperature variability on low-latitude land areas. In most models the gradual doubling of CO2 leads to a decrease in temperature variability in the winter half-year in the extratropical Northern Hemisphere and over the high-latitude Southern Ocean. Over land in low latitudes and in northern midlatitudes in summer, a slight tendency toward increased temperature variability occurs. The standard deviation of monthly precipitation increases, on average, where the mean precipitation increases but also does so in some areas where the mean precipitation decreases slightly. The coefficient of variation of precipitation (i.e., the ratio between the standard deviation and the mean) also tends to increase in most areas, especially where the mean precipitation decreases. However, the changes in variability are less similar between the 19 experiments than the changes in mean temperature and precipitation, at least partly because they have a much lower signal-to-noise ratio. In addition, the changes in the standard deviation of monthly temperature are generally much smaller than the time-mean warming, which suggests that future changes in the extremes of interannual temperature variability will be largely determined by the latter.

Corresponding author address: Dr. Jouni Räisänen, Rossby Centre, SMHI, S-60176 Norrköping, Sweden. Email: jouni.raisanen@smhi.se

Abstract

CO2-induced changes in the interannual variability of monthly surface air temperature and precipitation are studied using 19 model experiments participating in the second phase of the Coupled Model Intercomparison Project (CMIP2). The magnitude of variability in the control runs appears generally reasonable, but it varies a great deal between different models, almost all of which overestimate temperature variability on low-latitude land areas. In most models the gradual doubling of CO2 leads to a decrease in temperature variability in the winter half-year in the extratropical Northern Hemisphere and over the high-latitude Southern Ocean. Over land in low latitudes and in northern midlatitudes in summer, a slight tendency toward increased temperature variability occurs. The standard deviation of monthly precipitation increases, on average, where the mean precipitation increases but also does so in some areas where the mean precipitation decreases slightly. The coefficient of variation of precipitation (i.e., the ratio between the standard deviation and the mean) also tends to increase in most areas, especially where the mean precipitation decreases. However, the changes in variability are less similar between the 19 experiments than the changes in mean temperature and precipitation, at least partly because they have a much lower signal-to-noise ratio. In addition, the changes in the standard deviation of monthly temperature are generally much smaller than the time-mean warming, which suggests that future changes in the extremes of interannual temperature variability will be largely determined by the latter.

Corresponding author address: Dr. Jouni Räisänen, Rossby Centre, SMHI, S-60176 Norrköping, Sweden. Email: jouni.raisanen@smhi.se

Save
  • Barthelet, P., L. Terray, and S. Valcke, 1998: Transient CO2 experiment using the ARPEGE/OPAICE non flux corrected coupled model. Geophys. Res. Lett., 25 , 22772280.

    • Search Google Scholar
    • Export Citation
  • Bell, J., P. Duffy, C. Covey, and L. Sloan, and the CMIP investigators,. 2000: Comparison of temperature variability in observations and sixteen climate model simulations. Geophys. Res. Lett., 27 , 261264.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., G. Flato, and D. Ramsden, 2000: A transient climate change simulation with greenhouse gas and aerosol forcing: Projected climate change to the twenty-first century. Climate Dyn., 16 , 427450.

    • Search Google Scholar
    • Export Citation
  • Boville, B. A., and P. R. Gent, 1998: The NCAR Climate System Model, Version One. J. Climate, 11 , 11151130.

  • Braconnot, P., O. Marti, and S. Joussaume, 1997: Adjustment and feedbacks in a global coupled ocean–atmosphere model. Climate Dyn., 13 , 507519.

    • Search Google Scholar
    • Export Citation
  • Cao, H. X., J. F. B. Mitchell, and J. R. Lavery, 1992: Simulated diurnal range and variability of surface temperature in a global climate model for present and doubled CO2 climates. J. Climate, 5 , 920943.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and Coauthors. 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 525–582.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and S. Manabe, 1988: The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J. Climate, 1 , 523546.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., 1989: The influence of soil wetness on near-surface atmospheric variability. J. Climate, 2 , 14471462.

  • Duffy, P. B., J. Bell, C. Covey, and L. Sloan, and the CMIP investigators,. 2000: Effect of flux adjustments on temperature variability in climate models. Geophys. Res. Lett., 27 , 763766.

    • Search Google Scholar
    • Export Citation
  • Emori, S., T. Nozawa, A. Abe Ouchi, A. Numaguti, M. Kimoto, and T. Nakajima, 1999: Coupled ocean–atmosphere model experiments of future climate change with an explicit representation of sulfate aerosol scattering. J. Meteor. Soc. Japan, 77 , 12991307.

    • Search Google Scholar
    • Export Citation
  • Flato, G. M., G. J. Boer, W. G. Lee, N. A. McFarlane, D. Ramsden, M. C. Reader, and A. J. Weaver, 2000: The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate. Climate Dyn., 16 , 451467.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73 , 19621970.

  • Giorgi, F., and R. Francisco, 2000: Evaluating uncertainties in the prediction of regional climate change. Geophys. Res. Lett., 27 , 12951298.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16 , 147168.

    • Search Google Scholar
    • Export Citation
  • Gordon, H. B., P. H. Whetton, A. B. Pittock, A. M. Fowler, and M. R. Haylock, 1992: Simulated changes in daily rainfall intensity due to the enhanced greenhouse effect: Implications for extreme rainfall events. Climate Dyn., 8 , 83102.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and J. F. B. Mitchell, 1995: Simulation of daily variability of surface temperature and precipitation over Europe in the current and 2 × CO2 climates using the UKMO climate model. Quart. J. Roy. Meteor. Soc., 121 , 14511476.

    • Search Google Scholar
    • Export Citation
  • Grotch, S. L., and M. C. MacCracken, 1991: The use of general circulation models to predict regional climate change. J. Climate, 4 , 286303.

    • Search Google Scholar
    • Export Citation
  • Hennessy, K. J., J. M. Gregory, and J. F. B. Mitchell, 1997: Changes in daily precipitation under enhanced greenhouse conditions. Climate Dyn., 13 , 667680.

    • Search Google Scholar
    • Export Citation
  • Hirst, A., S. P. O'Farrell, and H. B. Gordon, 2000: Comparison of a coupled ocean–atmosphere model with and without oceanic eddy-induced advection. Part I: Ocean spinup and control integrations. J. Climate, 13 , 139163.

    • Search Google Scholar
    • Export Citation
  • Johns, T. C., R. E. Carnell, J. F. Crossley, J. M. Gregory, J. F. B. Mitchell, C. A. Senior, S. F. B. Tett, and R. A. Wood, 1997: The second Hadley Centre Coupled ocean–atmosphere GCM: Model description, spinup and validation. Climate Dyn., 13 , 103134.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors. 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kattenberg, A., and Coauthors. 1996: Climate models—Projections of future climate. Climate Change 1995: The Science of Climate Change, J. T. Houghton et al., Eds., Cambridge University Press, 285–357.

    • Search Google Scholar
    • Export Citation
  • Katz, R., and B. Brown, 1992: Extreme events in a changing climate: Variability is more important than averages. Climatic Change, 21 , 303315.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., and F. W. Zwiers, 2000: Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere–ocean GCM. J. Climate, 13 , 37603788.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors. 2001: The NCEP/NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247268.

    • Search Google Scholar
    • Export Citation
  • Kittel, T. G. F., F. Giorgi, and G. A. Meehl, 1998: Intercomparison of regional biases and doubled CO2-sensitivity of coupled atmosphere–ocean general circulation experiments. Climate Dyn., 14 , 115.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., T. L. Delworth, K. W. Dixon, and R. J. Stouffer, 1999: Model assessment of regional surface temperature trends (1949–1997). J. Geophys Res., 104 , 3098130996.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., R. J. Stouffer, M. J. Spelman, and K. Bryan, 1991: Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Climate, 4 , 785818.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., M. Wheeler, and W. M. Washington, 1994: Low-frequency variability and CO2 transient climate change. Part 3: Intermonthly and interannual variability. Climate Dyn., 10 , 277303.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., G. J. Boer, C. Covey, M. Latif, and R. J. Stouffer, 2000: The Coupled Model Intercomparison Project (CMIP). Bull. Amer. Meteor. Soc., 81 , 313318.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., C. A. Wilson, and W. M. Cunnington, 1987: On CO2 climate sensitivity and model dependence of results. Quart. J. Roy. Meteor. Soc., 113 , 293322.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., S. Manabe, V. Meleshko, and T. Tokioka, 1990: Equilibrium climate change and its implications for the future. Climate Change: The IPCC Assessment, J. T. Houghton, G. J. Jenkins, and J. J. Ephraums, Eds., Cambridge University Press, 131–164.

    • Search Google Scholar
    • Export Citation
  • New, M., M. Hulme, and P. Jones, 1999: Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Climate, 12 , 829856.

    • Search Google Scholar
    • Export Citation
  • New, M., 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13 , 22172238.

    • Search Google Scholar
    • Export Citation
  • Nozawa, T., S. Emori, T. Takemura, T. Nakajima, A. Numaguti, A. Abe-Ouchi, and M. Kimoto, 2000: Coupled ocean–atmosphere model experiments of future climate change based on IPCC SRES scenarios. Preprints, 11th Symp. on Global Change Studies, Long Beach, CA, Amer. Meteor. Soc., 352–355.

    • Search Google Scholar
    • Export Citation
  • Power, S. B., R. A. Colman, B. J. McAvaney, R. R. Dahni, A. M. Moore, and N. R. Smith, 1993: The BMRC coupled atmosphere/ocean/sea-ice model. BMRC Res. Rep. 37, Bureau of Meteorology Research Centre, Melbourne, Australia, 58 pp.

    • Search Google Scholar
    • Export Citation
  • Räisänen, J., 2001: CO2-induced climate change in CMIP2 experiments: Quantification of agreement and role of internal variability. J. Climate, 14 , 20882104.

    • Search Google Scholar
    • Export Citation
  • Rind, D., R. Goldberg, and R. Ruedy, 1989: Change in climate variability in the 21st century. Climatic Change, 14 , 537.

  • Roeckner, E., L. Bengtsson, J. Feichter, J. Lelieveld, and H. Rodhe, 1999: Transient climate change simulations with a coupled atmosphere–ocean GCM including the tropospheric sulfur cycle. J. Climate, 12 , 30043032.

    • Search Google Scholar
    • Export Citation
  • Russell, G. L., and D. Rind, 1999: Response to CO2 transient increase in the GISS coupled model: Regional coolings in a warmer climate. J. Climate, 12 , 531539.

    • Search Google Scholar
    • Export Citation
  • Tett, S. F. B., T. C. Johns, and J. F. B. Mitchell, 1997: Global and regional variability in a coupled AOGCM. Climate Dyn., 13 , 303323.

    • Search Google Scholar
    • Export Citation
  • Tokioka, T., A. Noda, A. Kitoh, Y. Nikaidou, S. Nakagawa, T. Motoi, S. Yukimoto, and K. Takata, 1995: A transient CO2 experiment with the MRI CGCM: Quick report. J. Meteor. Soc. Japan, 73 , 817826.

    • Search Google Scholar
    • Export Citation
  • Voss, R., R. Sausen, and U. Cubasch, 1998: Peridiocally synchronously coupled integrations with the atmosphere–ocean general circulation model ECHAM3/LSG. Climate Dyn., 14 , 249266.

    • Search Google Scholar
    • Export Citation
  • Washington, W. M., and Coauthors. 2000: Parallel climate model (PCM) control and transient simulations. Climate Dyn., 16 , 755774.

  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., M. Endoh, Y. Kitamura, A. Kitoh, T. Motoi, and A. Noda, 2000: ENSO-like interdecadal variability in the Pacific Ocean as simulated in a coupled GCM. J. Geophys. Res., 105 ((D10),) 1394513963.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., G. Shi, H. Liu, and Y. Yu, Eds.,. 2000: IAP Global Ocean–Atmosphere–Land System Model. Science Press, 249 pp.

  • Zwiers, F. W., and V. V. Kharin, 1998: Changes in the extremes of the climate simulated by the CCC GCM2 under CO2 doubling. J. Climate, 11 , 22002222.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 874 279 23
PDF Downloads 360 79 8