Structure and Mechanisms of South Indian Ocean Climate Variability

Shang-Ping Xie International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Shang-Ping Xie in
Current site
Google Scholar
PubMed
Close
,
H. Annamalai International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by H. Annamalai in
Current site
Google Scholar
PubMed
Close
,
Friedrich A. Schott Institut für Meereskunde, University of Kiel, Kiel, Germany

Search for other papers by Friedrich A. Schott in
Current site
Google Scholar
PubMed
Close
, and
Julian P. McCreary Jr. International Pacific Research Center and Department of Oceanography, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Julian P. McCreary Jr. in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A unique open-ocean upwelling exists in the tropical South Indian Ocean (SIO), a result of the negative wind curl between the southeasterly trades and equatorial westerlies, raising the thermocline in the west. Analysis of in situ measurements and a model-assimilated dataset reveals a strong influence of subsurface thermocline variability on sea surface temperature (SST) in this upwelling zone. El Niño–Southern Oscillation (ENSO) is found to be the dominant forcing for the SIO thermocline variability, with SST variability off Sumatra, Indonesia, also making a significant contribution. When either an El Niño or Sumatra cooling event takes place, anomalous easterlies appear in the equatorial Indian Ocean, forcing a westward-propagating downwelling Rossby wave in the SIO. In phase with this dynamic Rossby wave, there is a pronounced copropagation of SST. Moreover, a positive precipitation anomaly is found over, or just to the south of, the Rossby wave–induced positive SST anomaly, resulting in a cyclonic circulation in the surface wind field that appears to feedback onto the SST anomaly. Finally, this downwelling Rossby wave also increases tropical cyclone activity in the SIO through its SST effect.

This coupled Rossby wave thus offers potential predictability for SST and tropical cyclones in the western SIO. These results suggest that models that allow for the existence of upwelling and Rossby wave dynamics will have better seasonal forecasts than ones that use a slab ocean mixed layer. The lagged-correlation analysis shows that SST anomalies off Java, Indonesia, tend to precede those off Sumatra by a season, a time lead that may further increase the Indian Ocean predictability.

Additional affiliation: Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

Corresponding author address: Dr. Shang-Ping Xie, International Pacific Research Center, SOEST, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96822. Email: xie@soest.hawaii.edu

Abstract

A unique open-ocean upwelling exists in the tropical South Indian Ocean (SIO), a result of the negative wind curl between the southeasterly trades and equatorial westerlies, raising the thermocline in the west. Analysis of in situ measurements and a model-assimilated dataset reveals a strong influence of subsurface thermocline variability on sea surface temperature (SST) in this upwelling zone. El Niño–Southern Oscillation (ENSO) is found to be the dominant forcing for the SIO thermocline variability, with SST variability off Sumatra, Indonesia, also making a significant contribution. When either an El Niño or Sumatra cooling event takes place, anomalous easterlies appear in the equatorial Indian Ocean, forcing a westward-propagating downwelling Rossby wave in the SIO. In phase with this dynamic Rossby wave, there is a pronounced copropagation of SST. Moreover, a positive precipitation anomaly is found over, or just to the south of, the Rossby wave–induced positive SST anomaly, resulting in a cyclonic circulation in the surface wind field that appears to feedback onto the SST anomaly. Finally, this downwelling Rossby wave also increases tropical cyclone activity in the SIO through its SST effect.

This coupled Rossby wave thus offers potential predictability for SST and tropical cyclones in the western SIO. These results suggest that models that allow for the existence of upwelling and Rossby wave dynamics will have better seasonal forecasts than ones that use a slab ocean mixed layer. The lagged-correlation analysis shows that SST anomalies off Java, Indonesia, tend to precede those off Sumatra by a season, a time lead that may further increase the Indian Ocean predictability.

Additional affiliation: Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

Corresponding author address: Dr. Shang-Ping Xie, International Pacific Research Center, SOEST, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96822. Email: xie@soest.hawaii.edu

Save
  • Anderson, D. L. T., and J. P. McCreary, 1985: Slowly propagating disturbances in a coupled ocean–atmosphere model. J. Atmos. Sci., 42 , 615629.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., and T. Yamagata, 2001: Subtropical SST dipole events in the southern Indian Ocean. Geophys. Res. Lett., 28 , 327330.

  • Behera, S. K., P. S. Salvekar, and T. Yamagata, 2000: Simulation of interannual SST variability in the tropical Indian Ocean. J. Climate, 13 , 34873499.

    • Search Google Scholar
    • Export Citation
  • Birol, F., and R. Morrow, 2001: Sources of the baroclinic waves in the southeast Indian Ocean. J. Geophys. Res., 106 , 91459160.

  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97 , 163172.

  • Carton, J. A., G. Chepurin, X. Cao, and B. Giese, 2000: A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30 , 294309.

    • Search Google Scholar
    • Export Citation
  • Chambers, D. P., B. D. Tapley, and R. H. Stewart, 1999: Anomalous warming in the Indian Ocean coincident with El Niño. J. Geophys. Res., 104 , 30353047.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. de Szoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographic variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28 , 433460.

    • Search Google Scholar
    • Export Citation
  • da Silva, A. M., C. C. Young, and S. Levitus, 1994: Atlas of Surface Marine Data 1994. NOAA Atlas NESDIS 6, 83 pp.

  • Godfrey, J. S., 1996: The effect of the Indonesian Throughflow on ocean circulation and heat exchange with the atmosphere: A review. J. Geophys. Res., 101 , 1221712237.

    • Search Google Scholar
    • Export Citation
  • Hirst, A. C., 1986: Unstable and damped equatorial modes in simple coupled ocean–atmosphere models. J. Atmos. Sci., 43 , 606630.

  • Huang, B., and J. L. Kinter, 2001: The interannual variability in the tropical Indian Ocean and its relations to El Nino/Southern Oscillation. Center for Ocean–Land–Atmosphere Studies. Tech. Rep. 94, Calverton, MD, 48 pp.

    • Search Google Scholar
    • Export Citation
  • Iizuka, S., T. Matsuura, and T. Yamagata, 2000: The Indian Ocean SST dipole simulated in a coupled general circulation model. Geophys. Res. Lett., 27 , 33693372.

    • Search Google Scholar
    • Export Citation
  • Jury, M. R., B. Pathack, and B. Parker, 1999: Climatic determinants and statistical prediction of tropical cyclone days in the southwest Indian Ocean. J. Climate, 12 , 17381746.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors. 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kawamura, R., T. Matsumura, and S. Iizuka, 2001: Role of equatorially asymmetric sea surface temperature anomalies in the Indian Ocean in the Asian summer monsoon and El Niño–Southern Oscillation coupling. J. Geophys. Res., 106 , 46814693.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12 , 917932.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1995: Interactions of the tropical oceans. J. Climate, 8 , 952964.

  • Latif, M., D. Dommenget, M. Dima, and A. Grotzner, 1999: The role of Indian Ocean sea surface temperature in forcing east African rainfall anomalies during December–January 1997/98. J. Climate, 12 , 34973504.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate, 13 , 42874309.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and G. Meyers, 1998: Forced Rossby waves in the southern tropical Indian Ocean. J. Geophys. Res., 103 , 2758927602.

  • Meyers, G., 1996: Variation of Indonesian throughflow and the El Niño–Southern Oscillation. J. Geophys. Res., 101 , 1225512263.

  • Mitchell, T., cited. 2001: Tropical cyclone positions. [Available online at http://tao.atmos.washington.edu/data_sets/tropical_cyclones/#data.].

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., and A. J. Busalacchi, 1999: Interannual variability of the dynamics and thermodynamics, and mixed layer processes in the Indian Ocean. J. Climate, 12 , 23002326.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., S. Signorini, J. Christian, A. Busalacchi, and C. McClain, 1999: Ocean color variability of the tropical Indo-Pacific basin observed by SeaWiFS during 1997–98. J. Geophys. Res., 104 , 1835118366.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., J. P. McCreary, and A. J. Busalacchi, 2000: Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J. Geophys. Res., 105 , 32953306.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 , 1426114290.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 1989: Sea surface temperature and Australian winter rainfall. J. Climate, 2 , 965973.

  • Nigam, S., and H. S. Shen, 1993: Structure of oceanic and atmospheric low-frequency variability over the tropical Pacific and Indian Oceans. Part I: COADS observations. J. Climate, 6 , 657676.

    • Search Google Scholar
    • Export Citation
  • Perigaud, C., and P. Delecluse, 1993: Interannual sea level variations in the tropical Indian Ocean from Geosat and shallow water simulations. J. Phys. Oceanogr., 23 , 19161934.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., T. Yamagata, and R. C. Pacanowski, 1984: Unstable air–sea interactions in the Tropics. J. Atmos. Sci., 41 , 604613.

    • Search Google Scholar
    • Export Citation
  • Pigot, L., and G. Meyers, 1999: Analysis of frequently repeated XBT lines in the Indian Ocean. CSIRO Marine Lab. Rep. 238, Hobart, Australia, 43 pp. [Available online at http://www.marine.csiro.au/∼pigot/REPORT/overview.html.].

    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., and H. M. Mulenga, 1999: Relationships between South African rainfall and SST anomalies in the SW Indian Ocean. Int. J. Climatol., 19 , 16511673.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., D. Cadel, and D. Gutzler, 1986: Interannual displacements of convection and surface circulation over the equatorial Indian Ocean. Quart. J. Roy. Meteor. Soc., 112 , 4367.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimal interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401 , 360363.

    • Search Google Scholar
    • Export Citation
  • Schiller, A., J. S. Godfrey, P. C. McIntosh, G. Meyers, and R. Fielder, 2000: Interannual dynamics and thermodynamics of the Indo–Pacific Oceans. J. Phys. Oceanogr., 30 , 9871012.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., and J. P. McCreary, 2001: The monsoon circulation of the Indian Ocean. Progress in Oceanography, Pergamon, in press.

  • Slingo, J. M., and H. Annamalai, 2000: 1997: The El Niño of the century and the response of the Indian summer monsoon. Mon. Wea. Rev., 128 , 17781797.

    • Search Google Scholar
    • Export Citation
  • Ting, M., and L. Yu, 1998: Steady response to tropical heating in wavy linear and nonlinear baroclinic models. J. Atmos. Sci., 55 , 35653582.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103 , 1429114324.

    • Search Google Scholar
    • Export Citation
  • Ueda, H., and J. Matsumoto, 2000: A possible triggering process of east–west asymmetric anomalies over the Indian Ocean in relation to 1997/98 El Niño. J. Meteor. Soc. Japan, 78 , 803818.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. von Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103 , 1424114259.

    • Search Google Scholar
    • Export Citation
  • Wang, C., R. H. Weisberg, and J. I. Virmani, 1999: Western Pacific interannual variability associated with the El Niño–Southern Oscillation. J. Geophys. Res., 104 , 51315149.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled oceanic–atmospheric dynamics in the Indian Ocean during 1997–98. Nature, 401 , 356360.

    • Search Google Scholar
    • Export Citation
  • White, W. B., 2000: Coupled Rossby waves in the Indian Ocean on interannual timescales. J. Phys. Oceanogr., 30 , 29722988.

  • Xie, P., and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9 , 840858.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., A. Kubokawa, and K. Hanawa, 1989: Oscillations with two feedback processes in a coupled ocean–atmosphere model. J. Climate, 2 , 946964.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., Y. Tanimoto, H. Noguchi, and T. Matsuno, 1999: How and why climate variability differs between the tropical Pacific and Atlantic. Geophys. Res. Lett., 26 , 16091612.

    • Search Google Scholar
    • Export Citation
  • Yu, L. S., and M. M. Rienecker, 1999: Mechanisms for the Indian Ocean warming during the 1997–98 El Niño. Geophys. Res. Lett., 26 , 735738.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3906 1383 36
PDF Downloads 2653 559 34