Bred Vectors of the Zebiak–Cane Model and Their Potential Application to ENSO Predictions

Ming Cai Department of Meteorology, University of Maryland at College Park, College Park, Maryland

Search for other papers by Ming Cai in
Current site
Google Scholar
PubMed
Close
,
Eugenia Kalnay Department of Meteorology, University of Maryland at College Park, College Park, Maryland

Search for other papers by Eugenia Kalnay in
Current site
Google Scholar
PubMed
Close
, and
Zoltan Toth SAIC at Environment Modeling Center, National Centers for Environmental Prediction, Camp Springs, Maryland

Search for other papers by Zoltan Toth in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The breeding method is used to obtain the bred vectors (BV) of the Zebiak–Cane (ZC) atmosphere–ocean coupled model. Bred vectors represent a nonlinear, finite-time extension of the leading local Lyapunov vectors of the ZC model. The spatial structure and growth rate of bred vectors are strongly related to the background ENSO evolution of the ZC model. It is equally probable for the BVs to have a positive or negative sign (defined using the Niño-3 index of the BV), though often there is a sign change just before or after an El Niño event. The growth rate (and therefore the spatial coherence) of the BVs peaks several months prior to and after an El Niño event and it is nearly neutral at the mature stage.

Potential applications of bred vectors for ENSO predictions are explored in the context of data assimilation and ensemble forecasting under a perfect model scenario. It is shown that when bred vectors are removed from random initial error fields, forecast errors can be reduced by up to 30%. This suggests that minimizing the projection of the bred vectors on the observation-minus-analysis field may be a beneficial factor to an operational forecast system. The ensemble mean of a pair of forecasts perturbed with positive/negative bred vectors improves the forecast skill, particularly for lead times longer than 6 months, substantially reducing the “spring barrier” for ENSO prediction.

Corresponding author address: Dr. Eugenia Kalnay, Department of Meteorology, University of Maryland at College Park, College Park, MD 20742. Email: ekalnay@atmos.umd.edu

Abstract

The breeding method is used to obtain the bred vectors (BV) of the Zebiak–Cane (ZC) atmosphere–ocean coupled model. Bred vectors represent a nonlinear, finite-time extension of the leading local Lyapunov vectors of the ZC model. The spatial structure and growth rate of bred vectors are strongly related to the background ENSO evolution of the ZC model. It is equally probable for the BVs to have a positive or negative sign (defined using the Niño-3 index of the BV), though often there is a sign change just before or after an El Niño event. The growth rate (and therefore the spatial coherence) of the BVs peaks several months prior to and after an El Niño event and it is nearly neutral at the mature stage.

Potential applications of bred vectors for ENSO predictions are explored in the context of data assimilation and ensemble forecasting under a perfect model scenario. It is shown that when bred vectors are removed from random initial error fields, forecast errors can be reduced by up to 30%. This suggests that minimizing the projection of the bred vectors on the observation-minus-analysis field may be a beneficial factor to an operational forecast system. The ensemble mean of a pair of forecasts perturbed with positive/negative bred vectors improves the forecast skill, particularly for lead times longer than 6 months, substantially reducing the “spring barrier” for ENSO prediction.

Corresponding author address: Dr. Eugenia Kalnay, Department of Meteorology, University of Maryland at College Park, College Park, MD 20742. Email: ekalnay@atmos.umd.edu

Save
  • Ballabrera-Poy, J., A. J. Busalacchi, and R. Murtugudde, 2001: Application of a reduced-order Kalman filter to initialize a coupled atmosphere–ocean model: Impact on the prediction of El Niño. J. Climate, 14 , 17201737.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., A. Leetmaa, V. E. Kousky, R. E. Livezey, E. O’Lenic, H. M. van den Dool, A. J. Wagner, and D. A. Unger, 1999: NCEP forecasts of the El Niño of 1997–98 and its U.S. impacts. Bull. Amer. Meteor. Soc., 80 , 18291852.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J. Atmos. Sci., 45 , 28892919.

    • Search Google Scholar
    • Export Citation
  • Benettin, G., L. Galgani, A. Glorgilli, and J. M. Strelcyn, 1980: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. Meccanica, 15 , 920.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., U. Schlese, E. Roeckner, M. Latif, T. P. Barnett, and N. Graham, 1993: A two-tiered approach to long-range climate forecasting. Science, 261 , 10261029.

    • Search Google Scholar
    • Export Citation
  • Boffetta, G., P. Guliani, G. Paladin, and A. Vulpiani, 1998: An extension of the Lyapunov analysis for the predictability problem. J. Atmos. Sci., 55 , 34093416.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., and T. N. Palmer, 1995: The singular vector structure of the atmospheric general circulation. J. Atmos. Sci., 52 , 14341456.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., 1991: Forecasting El Niño with a geographical model. Teleconnections Connecting World-Wide Climate Anomalies, M. Glantz, R. Katz, and N. Nicholls, Eds., Cambridge University Press, 345–369.

    • Search Google Scholar
    • Export Citation
  • Chang, Y., S. D. Schubert, and M. J. Suarez, 2000: Boreal winter predictions with the GEOS-2 GCM: The role of boundary forcing and initial conditions. Quart. J. Roy. Meteor. Soc., 126 , 129.

    • Search Google Scholar
    • Export Citation
  • Chen, D., M. A. Cane, S. E. Zebiak, R. Canizares, and A. Kaplan, 2000: Bias correction of an ocean–atmosphere coupled model. Geophys. Res. Lett., 27 , 25852588.

    • Search Google Scholar
    • Export Citation
  • Chen, Y-Q., D. S. Battisti, T. N. Palmer, J. Barsugli, and E. S. Sarachik, 1997: A study of the predictability of tropical Pacific SST in a coupled atmosphere–ocean model using singular vector analysis: The role of the annual cycle and the ENSO cycle. Mon. Wea. Rev., 125 , 831845.

    • Search Google Scholar
    • Export Citation
  • Corazza, M., E. Kalnay, D. J. Patil, R. Morss, I. Szunyogh, B. R. Hunt, E. Ott, and M. Cai, 2002a: Use of the breeding technique to estimate the structure of the analysis “errors of the day.”. Nonlinear Process. Geophys., in press.

    • Search Google Scholar
    • Export Citation
  • Corazza, M., E. Kalnay, D. J. Patil, E. Ott, J. A. Yorke, B. R. Hunt, I. Szunyogh, and M. Cai, 2002b: Use of the breeding technique in the estimation of the background error covariance for a quasi-geostrophic model. Preprints, Symp. on Observations, Data Assimilation and Predictability, Orlando, FL, Amer. Meteor. Soc., 154–157.

    • Search Google Scholar
    • Export Citation
  • Ehrendorfer, M., 1997: Predicting the uncertainty of numerical weather forecasts: A review. Meteor. Z., 6 , 147183.

  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Wea. Rev., 128 , 29052919.

  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126 , 796811.

    • Search Google Scholar
    • Export Citation
  • Ji, M., A. Leetmaa, and V. E. Kousky, 1996: Coupled model predictions of ENSO during the 1980s and 1990s at the National Centers for Environmental Prediction. J. Climate, 9 , 31053120.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 512 pp.

  • Kalnay, E., and Z. Toth, 1994: Removing growing errors in the analysis cycle. Preprints, 10th Conf. on Numerical Weather Prediction, Portland, OR, Amer. Meteor. Soc., 212–215.

    • Search Google Scholar
    • Export Citation
  • Latif, M,, and Coauthors. 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103 , 1437514393.

  • Livezey, R. E., M. Masutani, A. Leetmaa, H. Rui, M. Ji, and A. Kumar, 1997: Teleconnective response of the Pacific–North American region atmosphere to large central equatorial Pacific SST anomalies. J. Climate, 10 , 17871820.

    • Search Google Scholar
    • Export Citation
  • Mason, S. J., L. Goddard, N. E. Graham, E. Yulaeva, L. Sun, and P. A. Arkin, 1999: The IRI seasonal climate prediction system and the 1997/98 El Niño event. Bull. Amer. Meteor. Soc., 80 , 18531873.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., and T. N. Palmer, 1993: Predictability and finite-time instability of the northern winter circulation. Quart. J. Roy. Meteor. Soc., 119 , 269298.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122 , 73119.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1996: The dynamics of error growth and predictability in a coupled model of ENSO. Quart. J. Roy. Meteor. Soc., 122 , 14051446.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1997a: The singular vectors of a coupled ocean–atmosphere model of ENSO. Part I: Thermodynamics, energetics and error growth. Quart. J. Roy. Meteor. Soc., 123 , 953981.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1997b: The singular vectors of a coupled ocean–atmosphere model of ENSO. Part II: Sensitivity studies and dynamical significance. Quart. J. Roy. Meteor. Soc., 123 , 9831006.

    • Search Google Scholar
    • Export Citation
  • Palmer, Y. N., and D. L. T. Anderson, 1994: Prospects for seasonal forecasting. Quart. J. Roy. Meteor. Soc., 120 , 755793.

  • Pegion, P., S. Schubert, and M. J. Suarez, 2000: An assessment of the predictability of northern winter seasonal means with the NSIPP1 AGCM. NASA Tech. Memo. 104606, Vol. 18, 110 pp.

    • Search Google Scholar
    • Export Citation
  • Pires, C., R. Vautard, and O. Talagrand, 1996: On extending the limits of variational assimilation in chaotic systems. Tellus, 48A , 96121.

    • Search Google Scholar
    • Export Citation
  • Shukla, J,, and Coauthors. 2000: Dynamical seasonal prediction. Bull. Amer. Meteor. Soc., 81 , 25932606.

  • Smith, L. A., and I. Gilmour, 1998: Accountability and internal consistency in ensemble forecasting. Proc. Workshop on Predictability, Reading, United Kingdom, ECMWF, 113–128.

    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., D. L. T. Anderson, J. O. S. Alves, and M. A. Balmaseda, 1998: Global seasonal rainfall forecasts using a coupled ocean–atmosphere model. Nature, 392 , 370373.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45 , 32833287.

  • Swanson, K., R. Vautard, and C. Pires, 1998: Four-dimensional assimilation and predictability in a quasi-geostrophic model. Tellus, 50A , 369390.

    • Search Google Scholar
    • Export Citation
  • Szunyogh, I., E. Kalnay, and Z. Toth, 1997: A comparison of Lyapunov vectors and optimal vectors in a low resolution GCM. Tellus, 49A , 200227.

    • Search Google Scholar
    • Export Citation
  • Thompson, C. J., 1998: Initial conditions for optimal growth in a coupled ocean–atmosphere model of ENSO. J. Atmos. Sci., 55 , 537557.

    • Search Google Scholar
    • Export Citation
  • Thompson, C. J., and D. S. Battisti, 2000: A linear stochastic dynamical model of ENSO. Part I: Model development. J. Climate, 13 , 28182832.

    • Search Google Scholar
    • Export Citation
  • Thompson, C. J., and D. S. Battisti, 2001: A linear stochastic dynamical model of ENSO. Part II: Analysis. J. Climate, 14 , 445466.

  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74 , 23712330.

  • Toth, Z., and E. Kalnay, 1996: Climate ensemble forecasts: How to create them? Idojaras, 100 , 4352.

  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125 , 32973319.

  • Toth, Z., I. Szunyogh, E. Kalnay, and G. Iyengar, 1999: Comments on “Notes on the appropriateness of ‘bred modes’ for generating initial perturbations.”. Tellus, 51A , 442449.

    • Search Google Scholar
    • Export Citation
  • Trevisan, A., and R. Legnani, 1995: Transient error growth and local predictability: A study in the Lorenz system. Tellus, 47A , 103117.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., M. A. Cane, and S. E. Zebiak, 1997a: Predictability of a coupled model of ENSO using singular vector analysis. Part I: Optimal growth in seasonal background and ENSO cycles. Mon. Wea. Rev., 125 , 20432056.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., M. A. Cane, S. E. Zebiak, and T. N. Palmer, 1997b: Predictability of a coupled model of ENSO using singular vector analysis. Part II: Optimal growth and forecast skill. Mon. Wea. Rev., 125 , 20572073.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model for El Niño–Southern Oscillation. Mon. Wea. Rev., 115 , 22622278.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1293 778 233
PDF Downloads 335 78 7