CO2-Induced Changes in Atmospheric Angular Momentum in CMIP2 Experiments

Jouni Räisänen Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrkoping, Sweden

Search for other papers by Jouni Räisänen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The response of atmospheric angular momentum to a gradual doubling of CO2 is studied using 16 model experiments participating in the second phase of the Coupled Model Intercomparison Project (CMIP2). The relative angular momentum associated with atmospheric zonal winds increases in all but one of the models, although the magnitude of the change varies widely. About 90% of the 16-model mean increase comes from increasing westerly winds in the stratosphere and the uppermost low-latitude troposphere above 200 hPa. This increase in westerly winds reflects a steepening of the meridional temperature gradient near the tropopause and in the upper troposphere. The simulated temperature gradient at this height increases partly as an indirect consequence of the poleward decrease in the tropopause height, and partly because convection induces a maximum in warming in the tropical upper troposphere. The change in the omega angular momentum associated with the surface pressure distribution is in most models smaller than the change in the relative angular momentum, although its exact value is sensitive to the method of calculation.

Corresponding author address: Dr. Jouni Räisänen, Department of Physical Sciences, Division of Atmospheric Sciences, P.O. Box 64, FIN-00014, University of Helsinki, Finland. Email: jouni.raisanen@helsinki.fi

Abstract

The response of atmospheric angular momentum to a gradual doubling of CO2 is studied using 16 model experiments participating in the second phase of the Coupled Model Intercomparison Project (CMIP2). The relative angular momentum associated with atmospheric zonal winds increases in all but one of the models, although the magnitude of the change varies widely. About 90% of the 16-model mean increase comes from increasing westerly winds in the stratosphere and the uppermost low-latitude troposphere above 200 hPa. This increase in westerly winds reflects a steepening of the meridional temperature gradient near the tropopause and in the upper troposphere. The simulated temperature gradient at this height increases partly as an indirect consequence of the poleward decrease in the tropopause height, and partly because convection induces a maximum in warming in the tropical upper troposphere. The change in the omega angular momentum associated with the surface pressure distribution is in most models smaller than the change in the relative angular momentum, although its exact value is sensitive to the method of calculation.

Corresponding author address: Dr. Jouni Räisänen, Department of Physical Sciences, Division of Atmospheric Sciences, P.O. Box 64, FIN-00014, University of Helsinki, Finland. Email: jouni.raisanen@helsinki.fi

Save
  • Barthelet, P., L. Terray, and S. Valcke, 1998: Transient CO2 experiment using the ARPEGE/OPAICE non flux corrected coupled model. Geophys. Res. Lett., 25 , 22772280.

    • Search Google Scholar
    • Export Citation
  • Boville, B. A., and P. R. Gent, 1998: The NCAR Climate System Model, version one. J. Climate, 11 , 11151130.

  • Braconnot, P., O. Marti, and S. Joussaume, 1997: Adjustment and feedbacks in a global coupled ocean–atmosphere model. Climate Dyn., 13 , 507519.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U,, and Coauthors. 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 525–582.

    • Search Google Scholar
    • Export Citation
  • de Viron, O., V. Dehant, H. Goosse, and M. Crucifix, Participating CMIP Modeling Groups,. 2002: Effect of global warming on the length-of-day. Geophys. Res. Lett., 29 , 50.150.4.

    • Search Google Scholar
    • Export Citation
  • Emori, S., T. Nozawa, A. Abe-Ouchi, A. Numaguti, M. Kimoto, and T. Nakajima, 1999: Coupled ocean–atmosphere model experiments of future climate change with an explicit representation of sulfate aerosol scattering. J. Meteor. Soc. Japan, 77 , 12991307.

    • Search Google Scholar
    • Export Citation
  • Flato, G. M., G. J. Boer, W. G. Lee, N. A. McFarlane, D. Ramsden, M. C. Reader, and A. J. Weaver, 2000: The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate. Climate Dyn., 16 , 451467.

    • Search Google Scholar
    • Export Citation
  • Gibson, J. K., P. Kållberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1997: ERA description. ECMWF Reanalysis Project Rep. Series 1, European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom, 66 pp.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16 , 147168.

    • Search Google Scholar
    • Export Citation
  • Hirst, A., S. P. O’Farrell, and H. B. Gordon, 2000: Comparison of a coupled ocean–atmosphere model with and without oceanic eddy-induced advection. Part I: Ocean spinup and control integrations. J. Climate, 13 , 139163.

    • Search Google Scholar
    • Export Citation
  • Hoinka, K. P., 1998: Statistics of the global tropopause pressure. Mon. Wea. Rev., 126 , 33033325.

  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Eds.,. 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Huang, H-P., P. D. Sardeshmukh, and K. M. Weickmann, 1999: The balance of global angular momentum in a long-term atmospheric data set. J. Geophys. Res., 104 , 20312040.

    • Search Google Scholar
    • Export Citation
  • Huang, H-P., K. M. Weickmann, and C. J. Hsu, 2001: Trend in atmospheric angular momentum in a transient climate change simulation with greenhouse gas and aerosol forcing. J. Climate, 14 , 15251534.

    • Search Google Scholar
    • Export Citation
  • Johns, T. C., R. E. Carnell, J. F. Crossley, J. M. Gregory, J. F. B. Mitchell, C. A. Senior, S. F. B. Tett, and R. A. Wood, 1997: The second Hadley Centre Coupled ocean–atmosphere GCM: Model description, spinup and validation. Climate Dyn., 13 , 103134.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14 , 22382249.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. Speth, 1995: Estimates of atmospheric angular momentum, friction, and mountain torques during 1987–1988. J. Atmos. Sci., 52 , 36813694.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., R. J. Stouffer, M. J. Spelman, and K. Bryan, 1991: Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Climate, 4 , 785818.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., G. J. Boer, C. Covey, M. Latif, and R. J. Stouffer, 2000: The Coupled Model Intercomparison Project (CMIP). Bull. Amer. Meteor. Soc., 81 , 313318.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. Amer. Inst. Phys., 520 pp.

  • Power, S. B., R. A. Colman, B. J. McAvaney, R. R. Dahni, A. M. Moore, and N. R. Smith, 1993: The BMRC coupled atmosphere/ocean/sea-ice model. BMRC Research Rep. 37, Bureau of Meteorology Research Centre, Melbourne, Australia, 58 pp.

    • Search Google Scholar
    • Export Citation
  • Räisänen, J., 2001: CO2-induced climate change in CMIP2 experiments: Quantification of agreement and role of internal variability. J. Climate, 14 , 20882104.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., L. Bengtsson, J. Feichter, J. Lelieveld, and H. Rodhe, 1999: Transient climate change simulations with a coupled atmosphere–ocean GCM including the tropospheric sulfur cycle. J. Climate, 12 , 30043032.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3d ed. Pergamon Press, 293 pp.

  • Rosen, R. D., and W. J. Gutowski Jr., 1992: Response of zonal winds and atmospheric angular momentum to a doubling of CO2. J. Climate, 5 , 13911404.

    • Search Google Scholar
    • Export Citation
  • Russell, G. L., and D. Rind, 1999: Response to CO2 transient increase in the GISS coupled model: Regional coolings in a warmer climate. J. Climate, 12 , 531539.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., G. A. Schmidt, R. L. Miller, and D. Rind, 2001: Northern Hemisphere winter climate response to greenhouse gas, ozone, solar, and volcanic forcing. J. Geophys. Res., 106 , 71937210.

    • Search Google Scholar
    • Export Citation
  • Stone, D. A., A. J. Weaver, and R. J. Stouffer, 2001: Projection of climate change onto modes of atmospheric variability. J. Climate, 14 , 35513565.

    • Search Google Scholar
    • Export Citation
  • Swinbank, R., 1985: The global atmospheric angular momentum balance inferred from analyses made during the FGGE. Quart. J. Roy. Meteor. Soc., 111 , 977992.

    • Search Google Scholar
    • Export Citation
  • Tett, S. F. B., J. F. B. Mitchell, D. E. Parker, and M. R. Allen, 1996: Human influence on the atmospheric vertical temperature structure: Detection and observations. Science, 274 , 11701173.

    • Search Google Scholar
    • Export Citation
  • Tokioka, T., A. Noda, A. Kitoh, Y. Nikaidou, S. Nakagawa, T. Motoi, S. Yukimoto, and K. Takata, 1995: A transient CO2 experiment with the MRI CGCM: Quick Report. J. Meteor. Soc. Japan, 73 , 817826.

    • Search Google Scholar
    • Export Citation
  • Voss, R., R. Sausen, and U. Cubasch, 1998: Peridiocally synchronously coupled integrations with the atmosphere–ocean general circulation model ECHAM3/LSG. Climate Dyn., 14 , 249266.

    • Search Google Scholar
    • Export Citation
  • Washington, W. M,, and Coauthors. 2000: Parallel climate model (PCM) control and transient simulations. Climate Dyn., 16 , 755774.

  • WMO, 1957: Definition of the tropopause. WMO Bull., 6 , 136.

  • Zhang, X., G. Shi, H. Liu, and Y. Yu, Eds.,. . 2000: IAP Global Ocean–Atmosphere–Land System Model. Science Press, 249 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 261 53 3
PDF Downloads 90 26 0