• Betts, R. A. 2000. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408:187190.

  • Betts, R. A. 2001. Biogeophysical impacts of land use on present-day climate: Near-surface temperature change and radiative forcing. Atmos. Sci. Lett. 2.doi:10.1006/asle.2000.0023.

    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., P. Minnis, V. Ramanathan, and E. Harrison. 1986. Comparison of regional clear-sky albedos inferred from satellite observations and models comparisons. J. Climate Appl. Meteor. 25:214226.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G. 1975. Dynamics of deserts and drought in the Sahel. Quart. J. Roy. Meteor. Soc. 101:193202.

  • Chase, T. N., R. A. Pielke Sr., T. G. F. Kittel, R. R. Nemani, and S. W. Running. 2000. Simulated impacts of historical land cover changes on global climate in northern winter. Climate Dyn. 16:93105.

    • Search Google Scholar
    • Export Citation
  • Collatz, G. J., L. Bounoua, S. O. Los, D. A. Randall, I. Y. Fung, and P. J. Sellers. 2000. A mechanism for the influence of vegetation on the response of the diurnal temperature range to changing climate. Geophys. Res. Lett. 27:33813384.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. A. Betts, C. B. Bunton, R. L. H. Essery, P. R. Rowntree, and J. Smith. 1999. The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn. 15:183203.

    • Search Google Scholar
    • Export Citation
  • Friedl, M. A. Coauthors,. 2002. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 83:287302.

  • Gedney, N. and P. J. Valdes. 2000. The effect of Amazonian deforestation on the Northern Hemisphere circulation and climate. Geophys. Res. Lett. 27:30533056.

    • Search Google Scholar
    • Export Citation
  • Goldewijk, K. K. 2001. Estimating global land use change over the past 300 years: The HYDE database. Global Biogeochem. Cycles 15:417434.

    • Search Google Scholar
    • Export Citation
  • Govindasamy, B., P. B. Duffy, and K. Caldeira. 2001. Land use changes and Northern Hemisphere cooling. Geophys. Res. Lett. 28:291294.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. E. and M. Sato. 2001. Trends of measured climate forcing agents. Proc. Natl. Acad. Sci. USA 98:1477814783.

  • Hansen, J. E., M. Sato, and R. Ruedy. 1997. Radiative forcing and climate response. J. Geophys. Res. 102:68316864.

  • Hansen, J. E., M. Sato, A. Lacis, R. Ruedy, I. Tegen, and E. Matthews. 1998. Climate forcings in the Industrial Era. Proc. Natl. Acad. Sci. USA 95:1275312758.

    • Search Google Scholar
    • Export Citation
  • Haxeltine, A. and C. Prentice. 1996. BIOME 3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochem. Cycles 10:693709.

    • Search Google Scholar
    • Export Citation
  • Helldén, U. 1991. Desertification—Time for an assessment? Ambio 20:372383.

  • Henderson-Sellers, A. and M. F. Wilson. 1983. Surface albedo data for climatic modeling. Rev. Geophys. Space Phys. 21:17431778.

  • Hoffmann, W. A. and R. B. Jackson. 2000. Vegetation–climate feedbacks in the conversion of tropical savanna to grassland. J. Climate 13:15931602.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J. and A. J. Illingworth. 2000. Deriving cloud overlap statistics from radar. Quart. J. Roy. Meteor. Soc. 126:29032909.

  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson. Eds.,. 2001. Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Jacob, F., A. Olioso, M. Weiss, F. Baret, and O. Hautecoeur. 2002. Mapping short-wave albedo of agricultural surfaces, using airborne POLDER data. Remote Sens. Environ. 80:3646.

    • Search Google Scholar
    • Export Citation
  • Kleidon, A. and M. Heimann. 2000. Assessing the role of deep rooted vegetation in the climate system with model simulations: Mechanism, comparison to observations and implications for Amazonian deforestation. Climate Dyn. 16:183199.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z. and Y. L. Yung. 2000. Observed albedo decrease related to the spring snow retreat. Geophys. Res. Lett. 27:12991302.

  • Loveland, T. R. and A. S. Belward. 1997. The IGBP-DIS global 1 km land cover data set, DISCover: First results. Int. J. Remote Sen. 18:32913295.

    • Search Google Scholar
    • Export Citation
  • Matthews, E. 1983. Global vegetation and land use: New high-resolution data bases for climate studies. J. Climate Appl. Meteor. 22:474487.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., J. E. Jonson, J. Bartnicki, F. Stordal, and K. P. Shine. 2002. Role of spatial and temporal variations in the computation of radiative forcing due to sulphate aerosols: A regional study. Quart. J. Roy. Meteor. Soc. 128:973989.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., C. J. Tucker, and M. B. Ba. 1998. Desertification, drought, and surface vegetation: An example from the West African Sahel. Bull. Amer. Meteor. Soc. 79:815829.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J. and M. Zhao. 2000. The relative impact of observed change in land cover and carbon dioxide as simulated by a climate model. Geophys. Res. Lett. 27:12671270.

    • Search Google Scholar
    • Export Citation
  • Prentice, I. C., W. Cramer, S. P. Harrison, R. Leemans, R. A. Monserud, and A. M. Solomon. 1992. A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr. 19:117134.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann. 1989. Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science 243:5763.

    • Search Google Scholar
    • Export Citation
  • Ramankutty, N. and J. Foley. 1999. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochem. Cycles 13:9971027.

    • Search Google Scholar
    • Export Citation
  • Sagan, C., O. B. Toon, and J. B. Pollack. 1979. Anthropogenic climate changes and the Earth's climate. Science 206:13631368.

  • Schaaf, C. B. Coauthors,. 2002. First operational BRDF, albedo, and nadir reflectance products from MODIS. Remote Sens. Environ. 83:135148.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P. and P. Mde F. Forster. 1999. The effects of human activity on radiative forcing of climate change: A review of recent developments. Global Planet. Change 20:205225.

    • Search Google Scholar
    • Export Citation
  • Slingo, A. 1989. A GCM parameterization for the shortwave radiative properties of water clouds. J. Atmos. Sci. 46:14191427.

  • Stamnes, K., S-C. Tsay, W. Wiscombe, and K. Jayaweera. 1988. A numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 27:25022509.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L. 1978. Radiation profiles in extended water clouds. I: Theory. J. Atmos. Sci. 35:21112122.

  • Stephens, G. L. and C. M. R. Platt. 1987. Aircraft observations of the radiative and microphysical properties of stratocumulus and cumulus cloud fields. J. Climate Appl. Meteor. 26:12431269.

    • Search Google Scholar
    • Export Citation
  • Strugnell, N. C. and W. Lucht. 2001. An algorithm to infer continental-scale albedo from AVHRR data, land cover class, and field observations of typical BRDFs. J. Climate 14:13601376.

    • Search Google Scholar
    • Export Citation
  • Strugnell, N. C., W. Lucht, and C. Schaaf. 2001. A global albedo data set derived from AVHRR data for use in climate simulations. Geophys. Res. Lett. 28:191194.

    • Search Google Scholar
    • Export Citation
  • Sturm, M., J. P. McFadden, G. E. Liston, F. Stuart Chapin III, C. H. Racine, and J. Holmgren. 2001a. Snow–shrub interactions in Arctic tundra: A hypothesis with climate implications. J. Climate 14:336344.

    • Search Google Scholar
    • Export Citation
  • Sturm, M., C. Racine, and K. Tape. 2001b. Increasing shrub abundance in the Arctic. Nature 411:546547.

  • Tucker, C. J., H. E. Dregne, and W. W. Newcomb. 1991. Expansion and contraction of the Sahara Desert from 1980 to 1990. Science 253:299301.

    • Search Google Scholar
    • Export Citation
  • United Nations, cited 2001. 3600 million hectares seriously affected by desertification. FAO Press Release PR 01/38. [Available online at http://www.fao.org/WAICENT/OIS/PRESS_NE/PRESSENG/2001/pren0138.htm.].

    • Search Google Scholar
    • Export Citation
  • Wilson, M. F. and A. Henderson-Sellers. 1985. A global archive of land cover and soils data for use in general circulation climate models. J. Climatol. 5:119143.

    • Search Google Scholar
    • Export Citation
  • Wiscombe, W. and J. Evans. 1977. Exponential-sum fitting of radiative transmission functions. J. Comput. Phys. 24:416444.

  • Xue, Y. and J. Shukla. 1993. The influence of land surface properties on Sahel climate. Part I: Desertification. J. Climate 6:22322245.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., J. D. Neelin, K-M. Lau, and C. J. Tucker. 1999. Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science 286:15371540.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., A. J. Pitman, and T. N. Chase. 2001. The impact of land cover change on the atmospheric circulation. Climate Dyn. 17:467477.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 723 287 19
PDF Downloads 426 232 10

Uncertainties in Radiative Forcing due to Surface Albedo Changes Caused by Land-Use Changes

View More View Less
  • 1 Department of Geophysics, University of Oslo, Oslo, Norway
  • | 2 Telemark University College, Bø, Norway
Restricted access

Abstract

A radiative transfer model has been used for estimating the radiative forcing due to land-use changes. Five global datasets for current vegetation cover and three datasets of preagriculture vegetation have been adopted. The vegetation datasets have been combined with three datasets for surface albedo values. A distinct feature in all the calculations is the negative radiative forcing at the northern midlatitudes due to the conversion of forest to cropland. Regionally the radiative forcing is likely to be among the strongest of the climate forcing mechanisms. A wider range is estimated for the global mean radiative forcing due to land-use changes than previously reported. The single most important factor yielding the large range in estimated forcing is the cropland surface albedo values. This underlines the importance of characterizing surface albedo correctly.

* Additional affiliation: Norwegian Institute for Air Research, Kjeller, Norway

Corresponding author address: Dr. Gunnar Myhre, Dept. of Geophysics, P.O. Box 1022, Blindern, Oslo N-0315, Norway. gunnar.myhre@geofysikk.uio.no

Abstract

A radiative transfer model has been used for estimating the radiative forcing due to land-use changes. Five global datasets for current vegetation cover and three datasets of preagriculture vegetation have been adopted. The vegetation datasets have been combined with three datasets for surface albedo values. A distinct feature in all the calculations is the negative radiative forcing at the northern midlatitudes due to the conversion of forest to cropland. Regionally the radiative forcing is likely to be among the strongest of the climate forcing mechanisms. A wider range is estimated for the global mean radiative forcing due to land-use changes than previously reported. The single most important factor yielding the large range in estimated forcing is the cropland surface albedo values. This underlines the importance of characterizing surface albedo correctly.

* Additional affiliation: Norwegian Institute for Air Research, Kjeller, Norway

Corresponding author address: Dr. Gunnar Myhre, Dept. of Geophysics, P.O. Box 1022, Blindern, Oslo N-0315, Norway. gunnar.myhre@geofysikk.uio.no

Save