• Andrews, D. G., J. R. Holton, and C. B. Leovy. 1987. Middle Atmosphere Dynamics. International Geophysical Series, Vol. 40, Academic Press, 489 pp.

    • Search Google Scholar
    • Export Citation
  • Balachandran, N. K., D. Rind, P. Lonergan, and D. T. Shindell. 1999. Effects of solar cycle variability on the lower stratosphere. J. Geophys. Res. 104:2732127339.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P. and T. J. Dunkerton. 1998. Biennial, quasi-biennial, and decadal oscillations of potential vorticity in the Northern Hemisphere. J. Geophys. Res. 103:39193928.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P. and T. J. Dunkerton. 1999. Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res. 104:3093730946.

    • Search Google Scholar
    • Export Citation
  • Bates, J. R. 1981. A dynamical mechanism through which variations in solar ultraviolet radiation can influence tropospheric climate. Sol. Phys. 74:399415.

    • Search Google Scholar
    • Export Citation
  • Black, R. X. 2002. Stratospheric forcing of surface climate in the Arctic Oscillation. J. Climate 15:268277.

  • Chao, W. C. 1985. Sudden stratospheric warmings as catastrophes. J. Atmos. Sci. 42:16311646.

  • Charney, J. G. and P. G. Drazin. 1961. Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res. 66:83109.

    • Search Google Scholar
    • Export Citation
  • Christiansen, B. 1999. Stratospheric vacillations in a general circulation model. J. Atmos. Sci. 56:18581872.

  • Christiansen, B. 2000. Chaos, quasiperiodicity, and internal variability: Studies of a stratospheric vacillation model. J. Atmos. Sci. 57:31613173.

    • Search Google Scholar
    • Export Citation
  • Haigh, J. D. 1994. The role of stratospheric ozone in modeling the solar radiative forcing of climate. Nature 33:544546.

  • Hartmann, D. L., J. M. Wallace, V. Limpasuvan, D. W. J. Thompson, and J. R. Holton. 2000. Can ozone depletion and global warming interact to produce rapid climate change? Proc. Natl. Acad. Sci. USA 97:14121417.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R. and C. Mass. 1976. Stratospheric vacillation cycles. J. Atmos. Sci. 33:22182225.

  • Holton, J. R. and T. J. Dunkerton. 1978. On the role of wave transience and dissipation in stratospheric mean flow vacillations. J. Atmos. Sci. 35:740744.

    • Search Google Scholar
    • Export Citation
  • Hood, L. L., J. L. Jiricovich, and J. P. McCormack. 1993. Quasi-decadal variability of the stratospheric influence on long-term solar ultraviolet variations. J. Atmos. Sci. 50:39493958.

    • Search Google Scholar
    • Export Citation
  • Hoyt, D. V. and K. H. Schatten. 1997. The Sun and Climate Change. Cambridge University Press, 279 pp.

  • Hu, Y. and K. K. Tung. 2002. Interannual and decadal variations of planetary wave activity, stratospheric cooling, and Northern Hemisphere annular mode. J. Climate 15:16591673.

    • Search Google Scholar
    • Export Citation
  • Kodera, K. M. 1995. On the origin and nature of the interannual variability of the winter stratospheric circulation in the Northern Hemisphere. J. Geophys. Res. 100:1407714087.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K. and H. van Loon. 1999. The Stratosphere. Springer, 179 pp.

  • Lean, J. 1987. Solar ultraviolet variations: A review. J. Geophys. Res. 92:839868.

  • Lean, J. and D. Rind. 2001. Earth's response to a variable Sun. Science 292:234236.

  • Nicolis, C. 1982. Stochastic aspects of climatic transitions—Response to periodic forcing. Tellus 34:19.

  • Pierce, R. B. and T. D. A. Fairlie. 1993. Observational evidence of preferred flow regimes in the Northern Hemisphere winter stratosphere. J. Atmos. Sci. 50:19361949.

    • Search Google Scholar
    • Export Citation
  • Ruzmaikin, A. and J. Feynman. 2002. Solar influence on a major mode of atmospheric variability. J. Geophys. Res. 107/D14:4209, doi:10.1029/2001JD001239.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J. and J. M. Wallace. 1998. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 25:12971300.

    • Search Google Scholar
    • Export Citation
  • Wakata, Y. and M. Uryu. 1987. Stratospheric multiple equilibria and seasonal variations. J. Meteor. Soc. Japan 65:2742.

  • Yoden, S. 1987. Bifurcation properties of a stratospheric vacillation model. J. Atmos. Sci. 44:17231733.

  • Yoden, S. 1990. An illustrative model of seasonal and interannual variations of the stratospheric circulation. J. Atmos. Sci. 47:18451853.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 210 192 9
PDF Downloads 72 58 11

A Simple Model of Stratospheric Dynamics Including Solar Variability

View More View Less
  • 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 2 Department of Physics and Astronomy, California State University Northridge, Northridge, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A simple dynamic model, truncated from the stratospheric wave–zonal flow interaction Holton and Mass model, is introduced and studied. This model consists of three ordinary differential equations controlled by two parameters: the initial amplitude of planetary waves and the vertical gradient of the zonal wind. The changes associated with seasonal variations and with the solar variability are introduced as periodic modulations of the zonal wind gradient. The major climatic response to these changes is seen through modulation of the number of cold and warm winters.

Corresponding author address: Dr. Alexander Ruzmaikin, JPL, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109. aruzmaik@pop.jpl.nasa.gov

Abstract

A simple dynamic model, truncated from the stratospheric wave–zonal flow interaction Holton and Mass model, is introduced and studied. This model consists of three ordinary differential equations controlled by two parameters: the initial amplitude of planetary waves and the vertical gradient of the zonal wind. The changes associated with seasonal variations and with the solar variability are introduced as periodic modulations of the zonal wind gradient. The major climatic response to these changes is seen through modulation of the number of cold and warm winters.

Corresponding author address: Dr. Alexander Ruzmaikin, JPL, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109. aruzmaik@pop.jpl.nasa.gov

Save