• Allan, R., and R. D. D'Arrigo, 1999: ‘Persistent’ ENSO sequences: How unusual was the 1990–95 El Niño? Holocene, 9 , 101118.

  • Allan, R., and Coauthors. 2001: Is there an equatorial Indian Ocean SST Dipole, and is it independent of the El Niño Southern Oscillation. CLIVAR Exch., 6 , 1822.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., R. Murtugudde, J. Potemra, S. Xie, and B. Wang, 2003: Coupled dynamics in the Indian Ocean: Spring initiation of the zonal mode. Deep-Sea Res., in press.

    • Search Google Scholar
    • Export Citation
  • Arblaster, J. M., G. A. Meehl, and A. Moore, 2002: Interdecadal modulation of Australian rainfall. Climate Dyn., 18 , 519531.

  • Baquero-Bernal, A., M. Latif, and S. Legutke, 2002: On dipolelike variability of SST in the tropical Indian Ocean. J. Climate, 15 , 13581368.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., P. S. Salvekar, and T. Yamagata, 2000: Simulation of interannual SST variability in the tropical Indian Ocean. J. Climate, 13 , 34873499.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1998: The land surface climatology of the NCAR Land Surface Model coupled to the NCAR Community Climate Model. J. Climate, 11 , 13071326.

    • Search Google Scholar
    • Export Citation
  • Boville, B., and P. Gent, 1998: The NCAR Climate System Model, version one. J. Climate, 11 , 11151130.

  • Chang, C. P., and T. Li, 2000: A theory for the tropical tropospheric biennial oscillation. J. Atmos. Sci., 57 , 22092224.

  • Clark, C. O., J. E. Cole, and P. J. Webster, 2000: Indian Ocean SST and Indian summer rainfall: Predictive relationships and their decadal variability. J. Climate, 13 , 25032519.

    • Search Google Scholar
    • Export Citation
  • Clarke, A., X. Liu, and S. Van Gorder, 1998: Dynamics of the biennial oscillation in the equatorial Indian and far western Pacific Oceans. J. Climate, 11 , 9871001.

    • Search Google Scholar
    • Export Citation
  • Garternicht, U., and F. Schott, 1997: Heat fluxes of the Indian Ocean from a global eddy-resolving model. J. Geophys. Res., 102 , 2114721159.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., F. O. Bryan, G. Danabasoglu, S. C. Doney, W. R. Holland, W. G. Large, and J. C. McWilliams, 1998: The NCAR Climate System Model global ocean component. J. Climate, 11 , 12871306.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., 1995: A multiscale interaction model for the origin of the tropospheric QBO. J. Climate, 8 , 524534.

  • Hastenrath, S., and L. Greischar, 1993: The monsoonal heat budget of the hydrosphere-atmosphere system in the Indian Ocean sector. J. Geophys. Res., 98 , 68696881.

    • Search Google Scholar
    • Export Citation
  • Hsiung, J., R. E. Newell, and T. Houghtby, 1989: The annual cycle of oceanic heat storage and oceanic meridional heat transport. Quart. J. Roy. Meteor. Soc., 115 , 128.

    • Search Google Scholar
    • Export Citation
  • Iizuka, S., T. Matsuura, and T. Yamagata, 2000: The Indian Ocean SST dipole simulated in a coupled general circulation model. Geophys. Res. Lett., 27 , 33693372.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors. 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kawamura, R., T. Matsuura, and S. Iizuka, 2001: Role of an equatorially asymmetric mode in the Indian Ocean in the Asian summer monsoon-ENSO coupling. J. Geophys. Res., 106 , 46814693.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311150.

    • Search Google Scholar
    • Export Citation
  • Kim, K. M., and K. M. Lau, 2001: Dynamics of monsoon-induced biennial variability in ENSO. Geophy. Res. Lett., 28 , 315318.

  • Kitoh, A., S. Yukimoto, and A. Noda, 1999: ENSO-monsoon relationship in the MRI coupled GCM. J. Meteor. Soc. Japan, 77 , 12211245.

  • Lau, K-M., and H-T. Wu, 1999: Assessment of the impacts of the 1997–98 El Niño on the Asian–Australian monsoon. Geophys. Res. Lett., 26 , 17471750.

    • Search Google Scholar
    • Export Citation
  • Lee, T., and J. Marotzke, 1997: Inferring meridional mass and heat transports of the Indian Ocean by fitting a general circulation model to climatological data. J. Geophys. Res., 102 , 1058510602.

    • Search Google Scholar
    • Export Citation
  • Li, T., C. W. Tham, and C. P. Chang, 2001: A coupled air–sea–monsoon oscillator for the tropospheric biennial oscillation. J. Climate, 14 , 752764.

    • Search Google Scholar
    • Export Citation
  • Loschnigg, J., and P. J. Webster, 2000: A coupled ocean–atmosphere system of SST modulation in the Indian Ocean. J. Climate, 13 , 33423360.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1987: The annual cycle and interannual variability in the tropical Pacific and Indian Ocean regions. Mon. Wea. Rev., 115 , 2750.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1993: A coupled air–sea biennial mechanism in the tropical Indian and Pacific Ocean regions: Role of the ocean. J. Climate, 6 , 3141.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1994: Coupled land–ocean–atmosphere processes and South Asian monsoon variability. Science, 266 , 263267.

  • Meehl, G. A., 1997: The south Asian monsoon and the tropospheric biennial oscillation. J. Climate, 10 , 19211943.

  • Meehl, G. A., and J. M. Arblaster, 1998: The Asian–Australian Monsoon and El Niño–Southern Oscillation in the NCAR Climate System Model. J. Climate, 11 , 13561385.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and J. M. Arblaster, 2001: The tropospheric biennial oscillation and Indian monsoon rainfall. Geophys. Res. Lett., 28 , 17311734.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and J. M. Arblaster, 2002a: Indian monsoon GCM sensitivity experiments testing tropospheric biennial oscillation transition conditions. J. Climate, 15 , 923944.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and J. M. Arblaster, 2002b: The tropospheric biennial oscillation and Asian–Australian monsoon rainfall. J. Climate, 15 , 722744.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, and J. Loschnigg, 2003: Coupled ocean–atmosphere dynamical processes in the tropical Indian and Pacific Oceans and the TBO. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., J. P. McCreary, and A. J. Busalacci, 2000: Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–98. J. Geophys. Res., 105 , 32953306.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 2001: Is there an equatorial Indian Ocean SST Dipole, independent of the El Niño Southern Oscillation. Preprints, Symp. on Climate Variability, the Oceans, and Societal Impacts, Albuquerque, NM, Amer. Meteor. Soc., 17–18.

    • Search Google Scholar
    • Export Citation
  • Ogasawara, N., A. Kitoh, T. Yasunari, and A. Noda, 1999: Tropospheric biennial oscillation of ENSO-monsoon system in the MRI coupled GCM. J. Meteor. Soc. Japan, 77 , 12471270.

    • Search Google Scholar
    • Export Citation
  • Parthasarathy, B., K. Rupa Kumar, and A. A. Munot, 1991: Evidence of secular variations in Indian monsoon rainfall–circulation relationships. J. Climate, 4 , 927938.

    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., R. J. Allan, J. A. Lindesay, and T. J. Ansell, 2000: ENSO and climatic signals across the Indian Ocean Basin in the global context: Part 1. Interannual composite patterns. Int. J. Climatol., 20 , 12851387.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., M. S. Halpert, and X. Wang, 1992: Observed tropospheric biennial variability and its relationship to the Southern Oscillation. J. Climate, 5 , 594614.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401 , 360363.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., and J. P. McCreary, 2001: The monsoon circulation of the Indian Ocean. Progress in Oceanography, Vol. 51, Pergamon, 1–123.

    • Search Google Scholar
    • Export Citation
  • Tomita, T., and T. Yasunari, 1996: Role of the northeast winter monsoon on the biennial oscillation of the ENSO/monsoon system. J. Meteor. Soc. Japan, 74 , 399413.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and P. J. Webster, 1998: The annual cycle of persistence in the El Niño–Southern Oscillation. Quart. J. Roy. Meteor. Soc., 124 , 19852004.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and T. J. Hoar, 1996: The 1990–1995 El Niño-Southern Oscillation event: Longest on record. Geophys. Res. Lett., 23 , 5760.

    • Search Google Scholar
    • Export Citation
  • Venzke, S., M. Latif, and A. Villwock, 2000: The Coupled GCM ECHO-2. Part II: Indian Ocean Response to ENSO. J. Climate, 13 , 13711383.

    • Search Google Scholar
    • Export Citation
  • Wacongne, S., and R. C. Pacanowski, 1996: Seasonal heat transport in the tropical Indian Ocean. J. Phys. Oceanogr., 26 , 26662699.

  • Wang, B., and Z. Fan, 1999: Choice of south Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80 , 629638.

  • Weatherly, J. W., B. P. Briegleb, W. G. Large, and J. A. Maslanik, 1998: Sea ice and polar climate in the NCAR CSM. J. Climate, 11 , 14721486.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118 , 877926.

  • Webster, P. J., V. Magana, T. N. Palmer, J. Shukla, R. Tomas, T. M. Yanai, and T. Yasunari, 1998: The monsoon: Processes, predictability and the prospects for prediction. J. Geophys. Res., 103 , 1445114510.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. Moore, J. P. Loschnigg, and R. Leben, 1999: Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–1998. Nature, 401 , 356360.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., J. Loschnigg, G. Cherikova, J. Fasullo, and W. Han, cited 2003: The coupled nature of the monsoon. [Manuscript available online at http://paos.colorado.edu/webster/selfreg/index.html.].

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1996: Analysis of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9 , 840858.

    • Search Google Scholar
    • Export Citation
  • Xie, S. P., H. Annamalai, F. A. Schott, and J. P. McCreary, 2002: Structure and mechanism of South Indian Ocean climate variability. J. Climate, 15 , 864878.

    • Search Google Scholar
    • Export Citation
  • Yang, S., K. M. Lau, and M. Sankar-Rao, 1996: Precursory signals associated with the interannual variability of the Asian Monsoon. J. Climate, 9 , 949964.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1990: Impact of Indian monsoon on the coupled atmosphere/ocean system in the tropical Pacific. Meteor. Atmos. Phys., 44 , 2941.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1991: The monsoon year—A new concept of the climatic year in the Tropics. Bull. Amer. Meteor. Soc., 72 , 13311338.

  • Yasunari, T., and Y. Seki, 1992: Role of the Asian monsoon on the interannual variability of the global climate system. J. Meteor. Soc. Japan, 70 , 177189.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115 , 22622278.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 235 85 3
PDF Downloads 114 55 3

The Asian Monsoon, the Tropospheric Biennial Oscillation, and the Indian Ocean Zonal Mode in the NCAR CSM

View More View Less
  • 1 International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
  • | 3 Program in Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado
  • | 4 National Center for Atmospheric Research, Boulder, Colorado
  • | 5 NOAA–CIRES Climate Diagnostics Center, University of Colorado, Boulder, Colorado
Restricted access

Abstract

The interaction of the Indian Ocean dynamics and the tropospheric biennial oscillation (TBO) is analyzed in the 300-yr control run of the National Center for Atmospheric Research (NCAR) Climate System Model (CSM). Sea surface temperature (SST) anomalies and equatorial ocean dynamics in the Indian Ocean are associated with the TBO and interannual variability of Asian–Australian monsoons in observations. The air–sea interactions involved in these processes in the coupled ocean–atmosphere model are analyzed, so as to diagnose the causes of the SST anomalies and their role in the development of a biennial cycle in the Indian–Pacific Ocean region.

By using singular value decomposition (SVD) analysis, it is found that the model reproduces the dominant mechanisms that are involved in the development of the TBO's influence on the south Asian monsoon: large-scale forcing from the tropical Pacific and regional forcing associated with both the meridional temperature gradient between the Asian continent and the Indian Ocean, as well as Indian Ocean SST anomalies. Using cumulative anomaly pattern correlation, the strength of each of these processes in affecting the interannual variability of both Asian and Australian monsoon rainfall is assessed.

In analyzing the role of the Indian Ocean dynamics in the TBO, it is found that the Indian Ocean zonal mode (IOZM) is an inherent feature of the Asian summer monsoon and the TBO. The IOZM is thus a part of the biennial nature of the Indian–Pacific Ocean region. The coupled ocean–atmosphere dynamics and cross-equatorial heat transport contribute to the interannual variability and biennial nature of the ENSO–monsoon system, by affecting the heat content of the Indian Ocean and resulting SST anomalies over multiple seasons, which is a key factor in the TBO.

Abstract

The interaction of the Indian Ocean dynamics and the tropospheric biennial oscillation (TBO) is analyzed in the 300-yr control run of the National Center for Atmospheric Research (NCAR) Climate System Model (CSM). Sea surface temperature (SST) anomalies and equatorial ocean dynamics in the Indian Ocean are associated with the TBO and interannual variability of Asian–Australian monsoons in observations. The air–sea interactions involved in these processes in the coupled ocean–atmosphere model are analyzed, so as to diagnose the causes of the SST anomalies and their role in the development of a biennial cycle in the Indian–Pacific Ocean region.

By using singular value decomposition (SVD) analysis, it is found that the model reproduces the dominant mechanisms that are involved in the development of the TBO's influence on the south Asian monsoon: large-scale forcing from the tropical Pacific and regional forcing associated with both the meridional temperature gradient between the Asian continent and the Indian Ocean, as well as Indian Ocean SST anomalies. Using cumulative anomaly pattern correlation, the strength of each of these processes in affecting the interannual variability of both Asian and Australian monsoon rainfall is assessed.

In analyzing the role of the Indian Ocean dynamics in the TBO, it is found that the Indian Ocean zonal mode (IOZM) is an inherent feature of the Asian summer monsoon and the TBO. The IOZM is thus a part of the biennial nature of the Indian–Pacific Ocean region. The coupled ocean–atmosphere dynamics and cross-equatorial heat transport contribute to the interannual variability and biennial nature of the ENSO–monsoon system, by affecting the heat content of the Indian Ocean and resulting SST anomalies over multiple seasons, which is a key factor in the TBO.

Save