• Apps, M. J., W. A. Kurz, R. J. Luxmoore, L. O. Nilsson, R. A. Sedjo, R. Schmidt, L. G. Simpson, and T. S. Vinson, 1993: Boreal forests and tundra. Water Air Soil Pollut., 70 , 3953.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., 1998: A model to predict surface temperatures. Bound.-Layer Meteor., 88 , 279306.

  • Best, M. J., and W. P. Hopwood, 2001: Modelling the local surface exchange over a grass field site under stable conditions. Quart. J. Roy. Meteor. Soc., 127 , 20332052.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and J. H. Ball, 1997: Albedo over the boreal forest. J. Geophys. Res., 102 , 2890128909.

  • Betts, R. A., 2000: Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature, 408 , 187190.

  • Blyth, E. M., R. J. Harding, and R. L. H. Essery, 1999: A coupled dual source GCM SVAT. Hydrol. Earth Syst. Sci., 3 , 7184.

  • Bowling, L. C., and Coauthors. 2003: Simulation of high latitude hydrological processes in the Torne-Kalix basin: PILPS Phase 2e. 1: Experiment design and summary intercomparisons. Global Planet. Change, in press.

    • Search Google Scholar
    • Export Citation
  • Chapin, F. S., and Coauthors. 2000: Arctic and boreal ecosystems of western North America as components of the climate system. Global Change Biol., 6 , (Suppl. 1),. 211223.

    • Search Google Scholar
    • Export Citation
  • Cionco, R. M., 1978: Analysis of canopy index values for various canopy densities. Bound.-Layer Meteor., 15 , 8193.

  • Cox, P. M., 2001: Description of the “TRIFFID” dynamic global vegetation model. Hadley Centre Tech. Note 24, Met Office, Bracknell, United Kingdom, 17 pp. [Available online at www.metoffice.gov.uk/research/hadleycentre/pubs/HCTN/HCTN_24.pdf.].

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. A. Betts, C. B. Bunton, R. L. H. Essery, P. R. Rowntree, and J. Smith, 1999: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn., 15 , 183203.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408 , 184187.

    • Search Google Scholar
    • Export Citation
  • Essery, R. L. H., 1998: Boreal forests and snow in climate models. Hydrol. Processes, 12 , 15611567.

  • Essery, R. L. H., and D. B. Clark, 2003: Developments in the MOSES land-surface model for PILPS 2e. Global Planet. Change, in press.

  • Essery, R. L. H., M. J. Best, R. A. Betts, P. M. Cox, and C. M. Taylor, 2003: Explicit representation of subgrid heterogeneity in a GCM land surface scheme. J. Hydrometeor., 4 , 530543.

    • Search Google Scholar
    • Export Citation
  • Gryning, S-E., E. Batchvarova, and H. A. R. de Bruin, 2001: Energy balance of a sparse coniferous high-latitude forest under winter conditions. Bound.-Layer Meteor., 99 , 465488.

    • Search Google Scholar
    • Export Citation
  • Gusev, E. M., and O. N. Nasonova, 2001: Parameterization of heat and moisture transfer processes in ecosystems of boreal forests. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 37 , 167185.

    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., R. S. DeFries, J. R. G. Townshend, and R. Sohlberg, 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21 , 13311364.

    • Search Google Scholar
    • Export Citation
  • Harding, R. J., and J. W. Pomeroy, 1996: The energy balance of the winter boreal landscape. J. Climate, 9 , 27782787.

  • Hardy, J. P., R. E. Davis, R. Jordan, X. Li, C. Woodcock, W. Ni, and J. C. McKenzie, 1997: Snow ablation modelling at the stand scale in a boreal jack pine forest. J. Geophys. Res., 102 , 2939729406.

    • Search Google Scholar
    • Export Citation
  • Hedstrom, N. R., and J. W. Pomeroy, 1998: Measurement and modelling of snow interception in the boreal forest. Hydrol. Processes, 12 , 16111625.

    • Search Google Scholar
    • Export Citation
  • Huntingford, C., S. J. Allen, and R. J. Harding, 1995: An intercomparison of single and dual-source vegetation–atmosphere transfer models applied to transpiration from Sahelian savannah. Bound.-Layer Meteor., 74 , 397418.

    • Search Google Scholar
    • Export Citation
  • Jones, H. G., 1983: Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. Cambridge University Press, 323 pp.

    • Search Google Scholar
    • Export Citation
  • Lee, L. W., 1975: Sublimation of snow in a turbulent atmosphere. Ph.D. thesis, University of Wyoming, 162 pp.

  • Liston, G. E., J. P. McFadden, M. Sturm, and R. A. Pielke, 2002: Modelled changes in arctic tundra snow, energy, and moisture fluxes due to increased shrubs. Global Change Biol., 8 , 1732.

    • Search Google Scholar
    • Export Citation
  • Lundberg, A., and S. Halldin, 2001: Snow interception evaporation. Review of measurement techniques, processes, and models. Theor. Appl. Climatol., 70 , 117133.

    • Search Google Scholar
    • Export Citation
  • Lundberg, A., I. Calder, and R. J. Harding, 1998: Evaporation of intercepted snow: Measurement and modeling. J. Hydrol., 206 , 151163.

    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1981: Evaporation and surface temperature. Quart. J. Roy. Meteor. Soc., 107 , 127.

  • Moore, C. J., and G. Fisch, 1986: Estimating heat storage in Amazonian tropical forest. Agric. For. Meteor., 38 , 147168.

  • Nakai, Y., T. Sakamoto, T. Terajima, K. Kitamura, and T. Shirai, 1999: The effect of canopy-snow on the energy balance above a coniferous forest. Hydrol. Processes, 13 , 23712382.

    • Search Google Scholar
    • Export Citation
  • Parviainen, J., and J. W. Pomeroy, 2000: Multiple-scale modelling of forest snow sublimation: Initial findings. Hydrol. Processes, 14 , 26692681.

    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., and R. A. Schmidt, 1993: The use of fractal geometry in modelling intercepted snow accumulation and sublimation. Proc. 50th Eastern Snow Conf., Quebec City, QC, Canada, ESC, 1–10.

    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., and D. M. Gray, 1995: Snowcover accumulation, relocation and management. NHRI Science Rep. 7, National Hydrology Research Institute, Saskatchewan, Canada, 134 pp.

    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., and K. Dion, 1996: Winter radiation extinction and reflection in a boreal pine canopy: Measurements and modelling. Hydrol. Processes, 10 , 15911608.

    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., and R. J. Granger, 1997: Sustainability of the western Canadian boreal forest under changing hydrological conditions. I. Snow accumulation and ablation. Sustainability of Water Resources under Increasing Uncertainty, IAHS Publ. 24., D. Rosbjerg et al., Eds., IAHS Press, 237–242.

    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., D. M. Gray, K. R. Shook, B. Toth, R. L. H. Essery, A. Pietroniro, and N. Hedstrom, 1998a: An evaluation of snow processes for land surface modelling. Hydrol. Processes, 12 , 23392367.

    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., J. Parviainen, N. Hedstrom, and D. M. Gray, 1998b: Coupled modelling of forest snow interception and sublimation. Hydrol. Processes, 12 , 23172337.

    • Search Google Scholar
    • Export Citation
  • Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton, 2000: The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Climate Dyn., 16 , 123146.

    • Search Google Scholar
    • Export Citation
  • Robinson, D. A., and G. Kukla, 1985: Maximum surface albedo of seasonally snow-covered lands in the Northern Hemisphere. J. Climate Appl. Meteor., 24 , 402411.

    • Search Google Scholar
    • Export Citation
  • Samuelsson, P., B. Bringfelt, and L. P. Graham, 2003: The role of aerodynamic roughness for the relationship between runoff and snow evaporation in land surface schemes. Global Planet. Change, in press.

    • Search Google Scholar
    • Export Citation
  • Schmidt, R. A., and J. W. Pomeroy, 1990: Bending of a conifer branch at subfreezing temperatures: Implications for snow interception. Can. J. For. Res., 20 , 12501253.

    • Search Google Scholar
    • Export Citation
  • Schmidt, R. A., and D. R. Gluns, 1991: Snowfall interception on branches of three conifer species. Can. J. For. Res., 21 , 12621269.

  • Schmidt, R. A., and C. A. Troendle, 1992: Sublimation of intercepted snow as a global source of water vapour. Proc. 60th Western Snow Conf., Jackson, WY, WSC, 1–9.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors. 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Climate, 9 , 676705.

    • Search Google Scholar
    • Export Citation
  • Storck, P., 2000: Trees, snow and flooding: An investigation of forest canopy effects on snow accumulation and melt at the plot and watershed scales in the Pacific Northwest. Water Resources Series Tech. Rep. 161, University of Washington, 176 pp.

    • Search Google Scholar
    • Export Citation
  • Storck, P., D. P. Lettenmaier, and S. M. Bolton, 2002: Measurement of snow interception and canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon, United States. Water Resour. Res., 38 , 1223. doi:10.1029/2002WR001281.

    • Search Google Scholar
    • Export Citation
  • Thom, A. S., 1971: Momentum absorption by vegetation. Quart. J. Roy. Meteor. Soc., 97 , 414428.

  • Thorpe, A. D., and B. J. Mason, 1966: The evaporation of ice spheres and ice crystals. J. Appl. Phys., 17 , 541548.

  • Verseghy, D. L., N. A. McFarlance, and M. Lazare, 1993: CLASS—A Canadian land surface scheme for GCMs, II. Vegetation model and coupled runs. Int. J. Climatol., 13 , 347370.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, T., and J. Kondo, 1992: The snowmelt and heat balance in snow-covered forested areas. J. Appl. Meteor., 31 , 13221327.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 594 343 12
PDF Downloads 310 186 7

Sublimation of Snow from Coniferous Forests in a Climate Model

View More View Less
  • 1 Hadley Centre for Climate Prediction and Research, Met Office, Bracknell, and Institute of Geography and Earth Sciences, University of Wales, Aberystwyth, United Kingdom
  • | 2 Institute of Geography and Earth Sciences, University of Wales, Aberystwyth, United Kingdom
  • | 3 Meteorological Service of Canada, Vancouver, British Columbia, Canada
  • | 4 Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington
Restricted access

Abstract

Improved representations of snow interception by coniferous forest canopies and sublimation of intercepted snow are implemented in a land surface model. Driven with meteorological observations from forested sites in Canada, the United States, and Sweden, the modified model is found to give reduced sublimation, better simulations of snow loads on and below canopies, and improved predictions of snowmelt runoff. When coupled to an atmospheric model in a GCM, however, drying and warming of the air because of the reduced sublimation provides a feedback that limits the impact of the new canopy snow model on the predicted sublimation. There is little impact on the average annual snowmelt runoff in the GCM, but runoff is delayed and peak runoff increased by the introduction of the canopy snow model.

Abstract

Improved representations of snow interception by coniferous forest canopies and sublimation of intercepted snow are implemented in a land surface model. Driven with meteorological observations from forested sites in Canada, the United States, and Sweden, the modified model is found to give reduced sublimation, better simulations of snow loads on and below canopies, and improved predictions of snowmelt runoff. When coupled to an atmospheric model in a GCM, however, drying and warming of the air because of the reduced sublimation provides a feedback that limits the impact of the new canopy snow model on the predicted sublimation. There is little impact on the average annual snowmelt runoff in the GCM, but runoff is delayed and peak runoff increased by the introduction of the canopy snow model.

Save