Hydroclimate of the Western United States Based on Observations and Regional Climate Simulation of 1981–2000. Part I: Seasonal Statistics

L. Ruby Leung Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by L. Ruby Leung in
Current site
Google Scholar
PubMed
Close
,
Yun Qian Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Yun Qian in
Current site
Google Scholar
PubMed
Close
, and
Xindi Bian Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Xindi Bian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The regional climate of the western United States shows clear footprints of interaction between atmospheric circulation and orography. The unique features of this diverse climate regime challenges climate modeling. This paper provides detailed analyses of observations and regional climate simulations to improve our understanding and modeling of the climate of this region. The primary data used in this study are the 1/8° gridded temperature and precipitation based on station observations and the NCEP–NCAR global reanalyses. These data were used to evaluate a 20-yr regional climate simulation performed using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (Penn State–NCAR) Mesoscale Model (MM5) driven by large-scale conditions of the NCEP–NCAR reanalyses. Regional climate features examined include seasonal mean and extreme precipitation; distribution of precipitation rates; and precipitation intensity, frequency, and seasonality. The relationships between precipitation and surface temperature are also analyzed as a means to evaluate how well regional climate simulations can be used to simulate surface hydrology, and relationships between precipitation and elevation are analyzed as diagnostics of the impacts of surface topography and spatial resolution. The latter was performed at five east–west transects that cut across various topographic features in the western United States.

These analyses suggest that the regional simulation realistically captures many regional climate features. The simulated seasonal mean and extreme precipitation are comparable to observations. The regional simulation produces precipitation over a wide range of precipitation rates comparable to observations. Obvious biases in the simulation include the oversimulation of precipitation in the basins and intermountain West during the cold season, and the undersimulation in the Southwest in the warm season. There is a tendency of reduced precipitation frequency rather than intensity in the simulation during the summer in the Northwest and Southwest, which leads to the insufficient summer mean precipitation in those areas. Because of the general warm biases in the simulation, there is also a tendency for more precipitation events to be associated with warmer temperatures, which can affect the simulation of snowpack and runoff.

Corresponding author address: Dr. L. Ruby Leung, Pacific Northwest National Laboratory, 902 Battelle Blvd., P.O. Box 999, Richland, WA 99352. Email: ruby.leung@pnl.gov

Abstract

The regional climate of the western United States shows clear footprints of interaction between atmospheric circulation and orography. The unique features of this diverse climate regime challenges climate modeling. This paper provides detailed analyses of observations and regional climate simulations to improve our understanding and modeling of the climate of this region. The primary data used in this study are the 1/8° gridded temperature and precipitation based on station observations and the NCEP–NCAR global reanalyses. These data were used to evaluate a 20-yr regional climate simulation performed using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (Penn State–NCAR) Mesoscale Model (MM5) driven by large-scale conditions of the NCEP–NCAR reanalyses. Regional climate features examined include seasonal mean and extreme precipitation; distribution of precipitation rates; and precipitation intensity, frequency, and seasonality. The relationships between precipitation and surface temperature are also analyzed as a means to evaluate how well regional climate simulations can be used to simulate surface hydrology, and relationships between precipitation and elevation are analyzed as diagnostics of the impacts of surface topography and spatial resolution. The latter was performed at five east–west transects that cut across various topographic features in the western United States.

These analyses suggest that the regional simulation realistically captures many regional climate features. The simulated seasonal mean and extreme precipitation are comparable to observations. The regional simulation produces precipitation over a wide range of precipitation rates comparable to observations. Obvious biases in the simulation include the oversimulation of precipitation in the basins and intermountain West during the cold season, and the undersimulation in the Southwest in the warm season. There is a tendency of reduced precipitation frequency rather than intensity in the simulation during the summer in the Northwest and Southwest, which leads to the insufficient summer mean precipitation in those areas. Because of the general warm biases in the simulation, there is also a tendency for more precipitation events to be associated with warmer temperatures, which can affect the simulation of snowpack and runoff.

Corresponding author address: Dr. L. Ruby Leung, Pacific Northwest National Laboratory, 902 Battelle Blvd., P.O. Box 999, Richland, WA 99352. Email: ruby.leung@pnl.gov

Save
  • Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78 , 21972213.

  • Berbery, E. H., 2001: Mesoscale moisture analysis of the North American monsoon. J. Climate, 14 , 121137.

  • Briegleb, B. P., 1992: Delta–Eddington approximation for solar radiation in the NCAR Community Climate Model. J. Geophys. Res., 97 , 76037612.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1996: Interannual climate variability and snowpack in the western United States. J. Climate, 9 , 928948.

  • Cayan, D. R., K. T. Redmond, and L. G. Riddle, 1999: ENSO and hydrologic extremes in the western United States. J. Climate, 12 , 28812893.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129 , 569585.

    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33 , 140158.

    • Search Google Scholar
    • Export Citation
  • Department of Energy, 1998: ACPI: The accelerated climate prediction initiative. Pacific Northwest National Laboratory, Department of Energy, Germantown, MD, 30 pp.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., D. R. Cayan, H. F. Diaz, and D. M. Meko, 1998: North–south precipitation patterns in western North America on interannual-to-decadal timescales. J. Climate, 11 , 30953111.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., G. T. Bates, and S. J. Nieman, 1993: The multiyear surface climatology of a regional atmospheric model over the western United States. J. Climate, 6 , 7595.

    • Search Google Scholar
    • Export Citation
  • Grell, G., J. Dudhia, and D. R. Stauffer, 1993: A description of the fifth generation Penn State/NCAR mesoscale model (MM5). NCAR Tech. Note. NCAR/TN-398+IA, National Center for Atmospheric Research, Boulder, CO, 107 pp.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, and X. L. Wang, 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10 , 26002622.

    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., and H-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, and D. Xiaosu, Eds.,. 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization in mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Kim, J., 1997: Precipitation and snow budget over the southwestern United States during the 1994–1995 winter season in a mesoscale simulation. Water Resour. Res., 33 , 28312839.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and S. J. Ghan, 1998: Parameterizing subgrid orographic precipitation and surface cover in climate models. Mon. Wea. Rev., 126 , 32713291.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and S. J. Ghan, 1999: Pacific Northwest climate sensitivity simulated by a regional climate model Driven by a GCM. Part I: Control simulations. J. Climate, 12 , 20102030.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and M. S. Wigmosta, 1999: Potential climate change impacts on mountain watersheds in the Pacific Northwest. J. Amer. Water Resour. Assoc., 35 , 14631471.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., M. S. Wigmosta, S. J. Ghan, D. J. Epstein, and L. W. Vail, 1996: Application of a subgrid orographic precipitation/surface hydrology scheme to a mountain watershed. J. Geophys. Res., 101 (D8) 1280312818.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., Y. Qian, X. Bian, and A. Hunt, 2003a: Hydroclimate of the western United States based on observations and regional climate simulation of 1981–2000. Part II: Mesoscale ENSO anomalies. J. Climate, 16 , 19121928.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., L. O. Mearns, F. Giorgi, and R. Wilby, 2003b: Regional climate research: Needs and opportunities. Bull. Amer. Meteor. Soc., 84 , 8995.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., and S. R. Hare, 2002: The Pacific Decadal Oscillation. J. Oceanogr., 58 , 3544.

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific Interdecadal Climate Oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78 , 10691079.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., G. M. O'Donnell, D. P. Lettenmaier, and J. O. Roads, 2001: Evaluation of the land surface water budget in NCEP/NCAR and NCEP/DOE Reanalyses using an off-line hydrologic model. J. Geophys. Res., 106 (D16) 1784117862.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., A. W. Wood, J. C. Adam, D. P. Lettenmaier, and B. Nijssen, 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15 , 32373251.

    • Search Google Scholar
    • Export Citation
  • Miller, N. L., and J. Kim, 1996: Numerical prediction of precipitation and river flow over the Russian River watershed during the January 1995 California storms. Bull. Amer. Meteor., Soc., 77 , 101106.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14) 1666316682.

    • Search Google Scholar
    • Export Citation
  • Mote, P., and Coauthors. 1999: Impacts of climate variability and change, Pacific Northwest. A Regional Report for the USGCRP National Assessment, 109 pp.

    • Search Google Scholar
    • Export Citation
  • New, M., M. Hulme, and P. Jones, 1999: Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Climate, 12 , 829856.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. J. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124B , 10711107.

    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., and P. H. Stone, 1996: A case study of the adequacy of GCM simulations for input to regional climate change assessment. J. Climate, 9 , 14411467.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., R. L. Gall, S. L. Mullen, and K. W. Howard, 1995: Model climatology of the Mexican monsoon. J. Climate, 8 , 17751794.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., S. Ackerman, and E. A. Smith, 1984: A shortwave parameterization revised to improve cloud absorption. J. Atmos. Sci., 41 , 687690.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., and V. V. Kharin, 1998: Changes in the extremes of the climate simulated by CCC GCM2 under CO2 doubling. J. Climate, 11 , 22002222.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 425 105 2
PDF Downloads 162 31 1