• Aeberhardt, M., , M. Blatter, , and T. F. Stocker, 2000: Variability on the century time scale and regime changes in a stochastically forced zonally averaged ocean–atmosphere model. Geophys. Res. Lett., 27 , 13031306.

    • Search Google Scholar
    • Export Citation
  • Alley, R. B., 1998: Icing the North Atlantic. Nature, 392 , 335.

  • Alley, R. B., , and D. R. MacAyeal, 1994: Ice rafted debris associated with binge/purge oscillations of the Laurentide ice sheet. Paleoceanography, 9 , 503511.

    • Search Google Scholar
    • Export Citation
  • Alley, R. B., , S. Anandakrishnan, , and P. Jung, 2001: Stochastic resonance in the North Atlantic. Paleoceanography, 16 , 190198.

  • Benzi, R., , A. Sutera, , and A. Vulpiani, 1981: The mechanism of stochastic resonance. J. Phys. A, 14 , L453L457.

  • Benzi, R., , G. Parisi, , A. Sutera, , and A. Vulpiani, 1982: Stochastic resonance in climatic change. Tellus, 34 , 1016.

  • Berglund, N., , and H. Kunz, 1999: Memory effects and scaling laws in slowly driven systems. J. Phys., 32A , 1539.

  • Berglund, N., , and B. Gentz, 2002: The effect of additive noise on dynamical hysteresis. Nonlinearity, 15 , 605632.

  • Bjornsson, H., , and L. A. Mysak, 2001: Present-day and last-glacical-maximum ocean thermohaline circulation in a zonally averaged coupled ocean–sea-ice–atmosphere model. J. Climate, 14 , 14221439.

    • Search Google Scholar
    • Export Citation
  • Bond, G. C., , and R. Lotti, 1995: Iceberg discharges into the North Atlantic on millennial timescales during the last glaciation. Science, 267 , 10051010.

    • Search Google Scholar
    • Export Citation
  • Bond, G. C., and Coauthors. 1992: Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period. Nature, 360 , 245249.

    • Search Google Scholar
    • Export Citation
  • Bond, G. C., , W. S. Broecker, , S. Johnsen, , J. McManus, , L. Labeyrie, , J. Jouzel, , and G. Bonani, 1993: Correlations between climate records from North Atlantic sediments and Greenland ice. Nature, 365 , 143147.

    • Search Google Scholar
    • Export Citation
  • Bond, G. C., and Coauthors. 1997: A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science, 278 , 12571266.

    • Search Google Scholar
    • Export Citation
  • Bond, G. C., and Coauthors. 2001: Persistent solar influence on North Atlantic climate during the Holocene. Science, 294 , 21302136.

  • Cessi, P., 1996: Convective adjustment and thermohaline excitability. J. Phys. Oceanogr., 26 , 481491.

  • Chen, D., , R. Gerdes, , and G. Lohmann, 1995: A 1-D atmospheric energy balance model developed for ocean modeling. Theor. Appl. Climatol., 51 , 2538.

    • Search Google Scholar
    • Export Citation
  • Clarke, G. K. C., 1987: Fast glacier flow: Ice streams, surging, and tidewater glaciers. J. Geophys. Res., 92 , 88358841.

  • Dansgaard, W., , S. J. Johnson, , H. B. Clausen, , D. Dahl-Jensen, , N. Hammer, , and C. U. Oeschger, 1984: North Atlantic climatic oscillations revealed by deep greenland ice cores. Climate Processes and Climate Sensitivity, Geophys. Monogr., No. 29, Amer. Geophys. Union, 288–298.

    • Search Google Scholar
    • Export Citation
  • Gammaitoni, L., , P. Hänggi, , P. Jung, , and F. Marchesoni, 1998: Stochastic resonance. Rev. Mod. Phys., 70 , 223288.

  • Gang, H., , T. Ditzinger, , C. Z. Ning, , and H. Haken, 1993: Stochastic resonance without external periodic force. Phys. Rev. Lett., 71 , 807813.

    • Search Google Scholar
    • Export Citation
  • Ganopolski, A., , and S. Rahmstorf, 2001: Rapid changes of glacial climate simulated in a coupled climate model. Nature, 409 , 153158.

  • Ganopolski, A., , and S. Rahmstorf, 2002: Abrupt glacial climate changes due to stochastic resonance. Phys. Rev. Lett., 88 .038501-1-038501-4.

    • Search Google Scholar
    • Export Citation
  • Gildor, H., , and E. Tziperman, 2001: A sea ice climate switch mechanism for the 100-kyr glacial cycles. J. Geophys. Res., 106 (C5) 91179133.

    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., , J. D. Opsteegh, , F. M. Selten, , and X. Wang, 2001: Rapid transitions and ultra-low-frequency behaviour in a 40 kyr integration with a coupled climate model of intermediate complexity. Climate Dyn., 17 , 559570.

    • Search Google Scholar
    • Export Citation
  • Haltiner, G. J., , and R. T. Williams, 1980: Numerical prediction and dynamic meteorology. John Wiley and Sons, 477 pp.

  • Hammer, C., , P. A. Mayewski, , D. Peel, , and M. Stuiver, 1997: Preface. J. Geophys. Res., 102 , 2631526316.

  • Haney, R. L., 1971: Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1 , 241248.

  • Heinrich, H., 1988: Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130 000 years. Quat. Res., 29 , 143152.

    • Search Google Scholar
    • Export Citation
  • Hulbe, C. L., 1997: An ice shelf mechanism for Heinrich layer production. Paleoceanography, 12 , 711717.

  • Keeling, C. D., , and T. P. Whorf, 2000: The 1800-year oceanic tidal cycle: A possible cause of rapid climate change. Proc. Natl. Acad. Sci. USA, 97 , 38143819.

    • Search Google Scholar
    • Export Citation
  • Kloeden, P. E., , and E. Platen, 1992: Numerical Solution of Stochastic Differential Equations. Springer, 632 pp.

  • Lambeck, K., , and J. Chappell, 2001: Sea level change through the last glacial cycle. Science, 292 , 679686.

  • Lang, C., , W. Leuenberger, , J. Schwander, , and S. Johnsen, 1999: Rapid temperature variations in central Greenland 70,000 years ago. Science, 286 , 934937.

    • Search Google Scholar
    • Export Citation
  • Latif, M., , E. Roeckner, , U. Mikolajewicz, , and R. Voss, 2000: Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. J. Climate, 13 , 18091813.

    • Search Google Scholar
    • Export Citation
  • Lindner, B., , and L. Schimansky-Geier, 1999: Analytical approach to the stochastic FitzHugh–Nagumo system and coherence resonance. Phys. Rev., 60E , 10631065.

    • Search Google Scholar
    • Export Citation
  • Lindner, B., , and L. Schimansky-Geier, 2000: Coherent and stochastic resonance in a two-state system. Phys. Rev., 61E , 61036110.

  • Longtin, A., 1997: Autonomous stochastic resonance in bursting neurons. Phys. Rev, 55E , 868876.

  • MacAyeal, D. R., 1993a: A low-order model of growth/purge oscillations of the Laurentide ice sheet. Paleoceanography, 8 , 767773.

  • MacAyeal, D. R., 1993b: Binge/purge oscillations of the Laurentide ice sheet as a cause of North Atlantic's Heinrich events. Paleoceanography, 8 , 775784.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., , and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21 , 342.

  • Manabe, S., , and R. J. Stouffer, 1995: Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature, 378 , 165167.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., 1990: Instabilities and multiple equilibria of the thermohaline circulation. Ph.D. thesis, Berichte aus dem Institut für Meereskunde, Kiel, Germany, 126 pp.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., , and P. H. Stone, 1995: Atmospheric transports, the thermohaline circulation, and flux adjustments in a simple coupled model. J. Phys. Oceanogr., 25 , 13501364.

    • Search Google Scholar
    • Export Citation
  • Marshall, S. J., , and G. K. C. Clarke, 1997: A continuum mixture model of ice stream thermomechanics in the Laurentide ice sheet. 2. Application to the Hudson Strait ice stream. J. Geophys. Res., 102 (B9) 2061520637.

    • Search Google Scholar
    • Export Citation
  • Marshall, S. J., , and G. K. C. Clarke, 1999: Modeling North American freshwater runoff through the last glacial cycle. Quat. Res., 52 , 300315.

    • Search Google Scholar
    • Export Citation
  • Mikolajewicz, U., , and E. Maier-Reimer, 1994: Mixed boundary conditions in ocean general circulation models and their influence on the stability of the model's conveyor belt. J. Geophys. Res., 99 (C11) 2263322644.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., , A. Timmermann, , and G. Lohmann, 2002: Comments on “Noise-induced transitions in a simplified model of the thermohaline circulation.”. J. Phys. Oceanogr., 32 , 11121116.

    • Search Google Scholar
    • Export Citation
  • Neiman, A., , P. Saparin, , and L. Stone, 1997: Coherence resonance at noisy precursors of bifurcation in nonlinear dynamical systems. Phys. Rev., 56E , 270273.

    • Search Google Scholar
    • Export Citation
  • Nicolis, C., 1982: Stochastic aspects of climatic transitions—Response to a periodic forcing. Tellus, 34 , 19.

  • Paillard, D., 1995: The hierarchical structure of glacial climatic oscillations: Interactions between ice-sheet dynamics and climate. Climate Dyn., 11 , 162177.

    • Search Google Scholar
    • Export Citation
  • Paul, A., , and M. Schulz, 2002: Holocene climate variability on centennial-to-millennial time scales: 2. Internal feedbacks and external forcings as possible causes. Climate Development and History of the North Atlantic Realm, G. Wefer, et al., Eds., Springer-Verlag, 55–73.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., , and K. Sakai, 2001: Dansgaard Oeschger oscillations: A hydrodynamic theory. The Northern North Atlantic: A Changing Environment, P. Schaefer et al., Eds., Springer-Verlag, 423–440.

    • Search Google Scholar
    • Export Citation
  • Pierce, D., , T. P. Barnett, , and U. Mikolajewicz, 1995: Competing roles of heat and freshwater flux in forcing thermohaline oscillations. J. Phys. Oceanogr., 25 , 20462064.

    • Search Google Scholar
    • Export Citation
  • Pierce, D., , K-Y. Kim, , and T. P. Barnett, 1996: Variability of the thermohaline circulation in an ocean general circulation model coupled to an atmospheric energy balance model. J. Phys. Oceanogr., 26 , 725738.

    • Search Google Scholar
    • Export Citation
  • Pikovsky, A., , and J. Kurths, 1997: Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett., 78 , 775778.

  • Pradines, J. R., , G. V. Osipov, , and J. J. Collins, 1999: Coherence resonance in excitable and oscillatory systems: The essential role of slow and fast dynamics. Phys. Rev., 60E , 64076410.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1997: Risk of sea-change in the Atlantic. Nature, 388 , 825826.

  • Rahmstorf, S., , and A. Ganopolski, 1999: Long-term global warming scenarios computed with an efficient coupled climate model. Climatic Change, 43 , 353367.

    • Search Google Scholar
    • Export Citation
  • Rivin, I., , and E. Tziperman, 1997: Linear versus self-sustained interdecadal thermohaline variability in a coupled box model. J. Phys. Oceanogr., 27 , 12161232.

    • Search Google Scholar
    • Export Citation
  • Rosenblum, M., , A. Pikovsky, , and J. Kurths, 1996: Phase synchronization of chaotic oscillators. Phys. Rev. Lett., 76 , 18041807.

  • Sakai, K., , and W. R. Peltier, 1995: A simple model of the Atlantic thermohaline circulation: Internal and forced variability with paleoclimatological implications. J. Geophys. Res., 100 (C7) 1345513479.

    • Search Google Scholar
    • Export Citation
  • Sakai, K., , and W. R. Peltier, 1996: A multibasin reduced model of the global thermohaline circulation: Paleocenaographic analyses of the origins of ice-age variability. J. Geophys. Res., 101 (C10) 2253522562.

    • Search Google Scholar
    • Export Citation
  • Sakai, K., , and W. R. Peltier, 1997: Dansgaard–Oeschger oscillations in a coupled atmosphere–ocean climate model. J. Climate, 10 , 949967.

    • Search Google Scholar
    • Export Citation
  • Sakai, K., , and W. R. Peltier, 1999: A dynamical system model of the Dansgaard–Oeschger oscillation and the origin of the Bond cycle. J. Climate, 12 , 22382255.

    • Search Google Scholar
    • Export Citation
  • Sakai, K., , and W. R. Peltier, 2001: The influence of deep ocean diffusivity on the temporal variability of the thermohaline circulation. The Oceans and Rapid Climate Change: Past, Present and Future, D. Seidov and M. Maslin, Eds., Amer. Geophys. Union, 227–242.

    • Search Google Scholar
    • Export Citation
  • Sarnthein, M., and Coauthors. 2001: Fundamental modes and abrupt changes in North Atlantic circulation and climate over the last 60 ky—Concepts, reconstructions and numerical modeling. The Northern North Atlantic: A Changing Environment, P. Schfer et al., Eds., Springer-Verlag, 365–410.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., , and T. F. Stocker, 1999: The stability of the thermohaline circulation in global warming experiments. J. Climate, 12 , 11171133.

    • Search Google Scholar
    • Export Citation
  • Schulz, M., 2002: On the 1470-year pacing of Dansgaard–Oeschger warm events. Paleoceanography, 17 .1014, doi:10.1029/2000PA000571.

  • Schulz, M., , A. Paul, , and A. Timmermann, 2002: Relaxation oscillators in concert: A framework for climate change at millennial timescales during the late Pleistocene. Geophys. Res. Lett., 29 .2193, doi:10.1029/2002GL016144.

    • Search Google Scholar
    • Export Citation
  • Severinghaus, J. P., , and E. J. Brook, 1999: Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science, 286 , 930934.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., , R. Knutti, , and G-K. Plattner, 2001: The future of the thermohaline circulation—A perspective. The Oceans and Rapid Climate Change: Past, Present, and Future, Geophys. Monogr., No. 126, Amer. Geophys. Union, 277–293. 2001.

    • Search Google Scholar
    • Export Citation
  • Stommel, H. M., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13 , 224230.

  • Stone, E., , and P. Holmes, 1989: Random perturbations of heteroclinic attractors. SIAM J. Appl. Math., 50 , 726743.

  • Stone, E., , and D. Armbruster, 1999: Noise and O(1) amplitude effects on heteroclinic cycles. Chaos, 9 , 499506.

  • Stuiver, M., , and P. M. Grootes, 2000: GISP2 oxygen isotope ratios. Quat. Res., 53 , 277284.

  • Timmermann, A., , and G. Lohmann, 2000: Noise-induced transitions in a simplified model of the thermohaline circulation. J. Phys. Oceanogr., 30 , 18911900.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., , M. Latif, , and R. Voss, 1998: Northern Hemispheric interdecadal variability: A coupled air–sea mode. J. Climate, 11 , 19061931.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., 1997: Inherently unstable climate behaviour due to weak thermohaline ocean circulation. Nature, 386 , 592595.

  • Tziperman, E., , and H. Gildor, 2002: The stabilization of the thermohaline circulation by the temperature–precipitation feedback. J. Phys. Oceanogr., 32 , 27072714.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., , J. R. Toggweiler, , Y. Feliks, , and K. Bryan, 1994: Instability of the thermohaline circulation with respect to mixed boundary conditions: Is it really a problem for realistic models? J. Phys. Oceanogr., 24 , 217232.

    • Search Google Scholar
    • Export Citation
  • UNESCO, 1981: 10th report of the joint panel on oceanographic tables and standards. UNESCO Tech. Papers in Marine Science 36, Paris, France, 55 pp.

    • Search Google Scholar
    • Export Citation
  • van den Geel, B., , O. M. Raspopov, , H. Renssen, , J. van der Plicht, , V. A. Dergachev, , and H. A. J. Meijer, 1999: The role of solar forcing upon climate change. Quat. Sci. Rev., 18 , 331338.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., , and E. S. Sarachik, 1991: The role of mixed boundary conditions in numerical models of the ocean's climate. J. Phys. Oceanogr., 21 , 14701493.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., , and T. M. C. Hughes, 1994: Rapid interglacial climate fluctuations driven by North Atlantic ocean circulation. Nature, 367 , 447450.

    • Search Google Scholar
    • Export Citation
  • Welander, P., 1986: A simple heat–salt oscillator. Dyn. Atmos. Oceans, 6 , 233242.

  • Winton, M., 1993: Deep decoupling oscillations of the oceanic thermohaline circulation. Ice in the Climate System, W. R. Peltier, Ed., NATO ASI Series, Vol. 12, Springer-Verlag, 417–432.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 1997: The effect of cold climate upon North Atlantic deep water formation in a simple ocean–atmosphere model. J. Climate, 10 , 3751.

    • Search Google Scholar
    • Export Citation
  • Winton, M., , and E. S. Sarachik, 1993: Thermohaline oscillations induced by strong steady salinity forcing of ocean general circulation models. J. Phys. Oceanogr., 23 , 13891410.

    • Search Google Scholar
    • Export Citation
  • Wright, D. G., , and T. F. Stocker, 1991: A zonally averaged model of the thermohaline circulation. Part I: Model development and flow dynamics. J. Phys. Oceanogr., 21 , 17131724.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., , R. W. Schmitt, , and R. X. Huang, 1999: The relative influence of diapycnal mixing and hydrologic forcing on the stability of the thermohaline circulation. J. Phys. Oceanogr., 29 , 10961108.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 242 242 13
PDF Downloads 74 74 14

Coherent Resonant Millennial-Scale Climate Oscillations Triggered by Massive Meltwater Pulses

View More View Less
  • 1 Institut für Meereskunde, Universität Kiel, Kiel, Germany
  • | 2 Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
  • | 3 Fachbereich Geowissenschaften, Universität Bremen, Bremen, Germany
  • | 4 Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
© Get Permissions
Restricted access

Abstract

The role of mean and stochastic freshwater forcing on the generation of millennial-scale climate variability in the North Atlantic is studied using a low-order coupled atmosphere–ocean–sea ice model. It is shown that millennial-scale oscillations can be excited stochastically, when the North Atlantic Ocean is fresh enough. This finding is used in order to interpret the aftermath of massive iceberg surges (Heinrich events) in the glacial North Atlantic, which are characterized by an excitation of Dansgaard–Oeschger events. Based on model results, it is hypothesized that Heinrich events trigger Dansgaard–Oeschger cycles and that furthermore the occurrence of Heinrich events is dependent on the accumulated climatic effect of a series of Dansgaard–Oeschger events. This scenario leads to a coupled ocean–ice sheet oscillation that shares many similarities with the Bond cycle. Further sensitivity experiments reveal that the timescale of the oscillations can be decomposed into stochastic, linear, and nonlinear deterministic components. A schematic bifurcation diagram is used to compare theoretical results with paleoclimatic data.

Corresponding author address: Dr. Axel Timmermann, Institute fur Meereskunde, Universität Kiel, Düsternbrooker Weg 20, Kiel D-24105, Germany. Email: atimmermann@ifm.uni-kiel.de

Abstract

The role of mean and stochastic freshwater forcing on the generation of millennial-scale climate variability in the North Atlantic is studied using a low-order coupled atmosphere–ocean–sea ice model. It is shown that millennial-scale oscillations can be excited stochastically, when the North Atlantic Ocean is fresh enough. This finding is used in order to interpret the aftermath of massive iceberg surges (Heinrich events) in the glacial North Atlantic, which are characterized by an excitation of Dansgaard–Oeschger events. Based on model results, it is hypothesized that Heinrich events trigger Dansgaard–Oeschger cycles and that furthermore the occurrence of Heinrich events is dependent on the accumulated climatic effect of a series of Dansgaard–Oeschger events. This scenario leads to a coupled ocean–ice sheet oscillation that shares many similarities with the Bond cycle. Further sensitivity experiments reveal that the timescale of the oscillations can be decomposed into stochastic, linear, and nonlinear deterministic components. A schematic bifurcation diagram is used to compare theoretical results with paleoclimatic data.

Corresponding author address: Dr. Axel Timmermann, Institute fur Meereskunde, Universität Kiel, Düsternbrooker Weg 20, Kiel D-24105, Germany. Email: atimmermann@ifm.uni-kiel.de

Save