• Geier, E. B., , R. N. Green, , D. P. Kratz, , P. Minnis, , W. Miller, , S. K. Nolan, , and C. B. Franklin, cited 2002: Clouds and Earth's Radiant Energy System single satellite footprint TOA/surface flux and clouds (SSF) collection document. 243 pp. [Available online at http://asd-www.larc.nasa.gov/ceres/collect_guide/.].

    • Search Google Scholar
    • Export Citation
  • Greenler, R., 1980: Rainbows, Halos, and Glories. Cambridge University Press, 195 pp.

  • Kiehl, J. T., , and K. E. Trenberth, 1997: Earth's annual global mean energy budget. Bull. Amer. Meteor. Soc., 78 , 197208.

  • Kneizys, F. X., , E. P. Shettle, , L. W. Abreu, , J. H. Chetwynd, , G. P. Anderson, , W. O. Gallery, , J. E. A. Selby, , and S. A. Clough, 1988: Users guide to LOWTRAN 7. Air Force Geophysics Laboratory Tech. Rep. AFGL-TR-88-0177, 137 pp.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , W. Barnes, , T. Kozu, , J. Shiue, , and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , K. J. Priestley, , D. P. Kratz, , E. B. Geire, , R. N. Green, , B. A. Wielicki, , P. O. Hinton, , and S. K. Nolan, 2001: Determination of unfiltered radiances from the Clouds and the Earth's Radiant Energy System instrument. J. Appl. Meteor., 40 , 822835.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , S. Kato, , and B. A. Wielicki, 2002: Defining top-of-the-atmosphere flux reference level for earth radiation budget studies. J. Climate, 15 , 33013309.

    • Search Google Scholar
    • Export Citation
  • Minnaert, M., 1954: The Nature of Light and Color in the Open Air. Dover, 361 pp.

  • Rozenberg, G. V., 1966: Twilight: A Study in Atmospheric Optics. Plenum Press, 358 pp.

  • Wielicki, B. A., , B. R. Barkstrom, , E. F. Harrison, , B. B. Lee III, , G. Louis Smith, , and J. E. Cooper, 1996: Clouds and the Earth's Radiant Energy System (CERES): An earth observing system experiment. Bull. Amer. Meteor. Soc., 77 , 853868.

    • Search Google Scholar
    • Export Citation
  • Young, D. F., , P. Minnis, , D. R. Doelling, , G. G. Gibson, , and T. Wong, 1998: Temporal interpolation methods for the Cloud and the Earth's Radiant Energy System (CERES) experiment. J. Appl. Meteor., 37 , 572590.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 147 147 4
PDF Downloads 26 26 4

Twilight Irradiance Reflected by the Earth Estimated from Clouds and the Earth's Radiant Energy System (CERES) Measurements

View More View Less
  • 1 Center for Atmospheric Sciences, Hampton University, Hampton, Virginia
© Get Permissions
Restricted access

Abstract

The upward shortwave irradiance at the top of the atmosphere when the solar zenith angle is greater than 90° (twilight irradiance) is estimated from radiance measurements by the Clouds and the Earth's Radiant Energy System (CERES) instrument on the Tropical Rainfall Measuring Mission (TRMM) satellite. The irradiance decreases with solar zenith angle from 7.5 W m−2 at 90.5° to 0.6 W m−2 at 95.5°. The global and daily average twilight irradiance is 0.2 W m−2, which is three orders of magnitude smaller than the daily and global average reflected irradiance at the top of the atmosphere. Therefore, the twilight irradiance can be neglected in global radiation budget estimate. The daily average twilight irradiance, however, can be more than 1 W m−2 at polar regions during seasons when the sun stays just below the horizon for a long period of time.

Corresponding author address: Dr. Seiji Kato, Mail Stop 420, NASA Langley Research Center, Hampton, VA 23681-2199. Email: s.kato@larc.nasa.gov

Abstract

The upward shortwave irradiance at the top of the atmosphere when the solar zenith angle is greater than 90° (twilight irradiance) is estimated from radiance measurements by the Clouds and the Earth's Radiant Energy System (CERES) instrument on the Tropical Rainfall Measuring Mission (TRMM) satellite. The irradiance decreases with solar zenith angle from 7.5 W m−2 at 90.5° to 0.6 W m−2 at 95.5°. The global and daily average twilight irradiance is 0.2 W m−2, which is three orders of magnitude smaller than the daily and global average reflected irradiance at the top of the atmosphere. Therefore, the twilight irradiance can be neglected in global radiation budget estimate. The daily average twilight irradiance, however, can be more than 1 W m−2 at polar regions during seasons when the sun stays just below the horizon for a long period of time.

Corresponding author address: Dr. Seiji Kato, Mail Stop 420, NASA Langley Research Center, Hampton, VA 23681-2199. Email: s.kato@larc.nasa.gov

Save