• Barkstrom, B. R., , E. Harrison, , G. Smith, , R. Green, , J. Kibler, , and R. Cess, and the ERBE Science Team, 1989: Earth Radiation Budget Experiment (ERBE) archival and April 1985 results. Bull. Amer. Meteor. Soc., 70 , 12541262.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J. Atmos. Sci., 45 , 28892919.

    • Search Google Scholar
    • Export Citation
  • Boville, B., , and P. Gent, 1998: Century integrations with the NCAR CSM version 1. J. Climate, 11 , 11151130.

  • Brady, E. C., 1994: Interannual variability of meridional heat transport in a numerical model of the upper equatorial Pacific Ocean. J. Phys. Oceanogr., 24 , 26752693.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., , A. C. Clement, , A. Kaplan, , Y. Kushnir, , D. Poznyakov, , R. Seager, , S. E. Zebiak, , and R. Murtugudde, 1997: Twentieth-century sea surface temperature trends. Science, 275 , 957960.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors. 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95 , 1660116615.

    • Search Google Scholar
    • Export Citation
  • Clement, A., , R. Seager, , M. A. Cane, , and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9 , 21902196.

  • Clement, A., , R. Seager, , and M. A. Cane, 2000: Suppression of El Niño during the mid-Holocence by changes in the earth's orbit. Paleoceanography, 15 , 731737.

    • Search Google Scholar
    • Export Citation
  • Crowley, W. P., , and G. R. North, 1991: Paleoclimatology. Oxford University Press, 339 pp.

  • Davey, M., and Coauthors. 2002: 1. STOIC: A study of coupled model climatology and variability in tropical ocean regions. Climate Dyn., 18 , 403420.

    • Search Google Scholar
    • Export Citation
  • Eckert, C., , and M. Latif, 1997: Predictability of a stochastically forced hybrid coupled model of El Niño. J. Climate, 10 , 14881504.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., 1991: The heat budget of the TOGA-COARE domain in an ocean model. J. Geophys. Res., 96 , 33233330.

  • Gent, P. R., , and M. A. Cane, 1989: A reduced gravity, primitive equation model of the upper equatorial ocean. Comput. Phys., 81 , 444480.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., , Y. Ding, , D. J. Griggs, , M. Noguer, , P. J. Linden, , X. Dai, , K. Maskell, , and C. A. Johnson, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp. [Available online at http://www.ipcc.ch/].

    • Search Google Scholar
    • Export Citation
  • Ji, M., , A. Leetmaa, , and J. Derber, 1995: An ocean analysis system for seasonal to interannual climate studies. Mon. Wea. Rev., 123 , 460481.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Jin, F-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54 , 830847.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors. 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kiehl, J. T., 1998: Simulation of the tropical Pacific warm-pool with the NCAR climate system model. J. Climate, 11 , 13421355.

  • Kiehl, J. T., , J. J. Hack, , G. B. Bonan, , B. A. Boville, , D. L. Williamson, , and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 13421345.

    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., , and J. Marotzke, 2000: Meridional heat transport by the subtropical cell. J. Phys. Oceanogr., 30 , 696705.

  • Knutson, T. R., , S. Manabe, , and D. Gu, 1997: Simulated ENSO in a global coupled ocean–atmosphere model: Multidecadal amplitude modulation and CO2 sensitivity. J. Climate, 10 , 131161.

    • Search Google Scholar
    • Export Citation
  • Latif, M., , A. Sterl, , E. Majer-Reimer, , and W. M. Junge, 1993: Climate variability in a coupled GCM. Part I: The tropical Pacific. J. Climate, 6 , 521.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors. 2002: ENSIP: The El Niño simulation intercomparison project. Climate Dyn., 18 , 255276.

  • Levitus, S., , and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994,. NOAA Atlas NESDIS 4, 117 pp.

  • Liu, Z., , S. G. H. Philander, , and R. C. Pacanowski, 1994: A GCM study of tropical–subtropical upper ocean mass exchange. J. Phys. Oceanogr., 24 , 26062623.

    • Search Google Scholar
    • Export Citation
  • Lu, P., , J. P. McCreary Jr., , and B. A. Klinger, 1998: Meridional circulation cells and the source waters of the Pacific equatorial undercurrent. J. Phys. Oceanogr., 28 , 6284.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., , and P. Lu, 1994: Interaction between the subtropical and the equatorial ocean circulations: The subtropical cell. J. Phys. Oceanogr., 24 , 466497.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997–98 El Niño. Science, 283 , 950954.

  • Meehl, G. A., , and J. M. Arblaster, 1998: The Asian and Australian monsoon and the El Niño–Southern Oscillation in the NCAR climate system model. J. Climate, 11 , 13561385.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , P. R. Brantstator, , and W. M. Washington, 1993: Tropical Pacific interannual variability and CO2 climate change. J. Climate, 6 , 4263.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , P. Gent, , J. M. Arblaster, , B. Otto-Bliesner, , E. Brady, , and A. Craig, 2001: Factors that affect amplitude of El Niño in global coupled climate models. Climate Dyn., 17 , 515526.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 1991: The slow sea surface temperature mode and the fast-wave limit: Analytical theory for tropical interannual oscillations and experiments in a hybrid coupled model. J. Atmos. Sci., 48 , 584606.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , and F. F. Jin, 1993: Modes of interannual tropical ocean–atmosphere interaction—A unified view. II: Analytical results in the weak coupling limit. J. Atmos. Sci., 50 , 30543522.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , D. S. Battisti, , A. C. Hirst, , F. F. Jin, , Y. Wakata, , T. Yamagata, , and S. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 , 1426114290.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., , and E. C. Brady, 2001: Tropical pacific variability in the NCAR Climate System Model. J. Climate, 14 , 35873607.

    • Search Google Scholar
    • Export Citation
  • Penland, C., , and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8 , 19992024.

  • Philander, S. G., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 293 pp.

  • Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci., 52 , 17841806.

  • Ramanathan, V., , and W. Collins, 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351 , 2732.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., , B. Subasilar, , G. J. Zhang, , W. Conant, , R. D. Cess, , J. T. Kiehl, , H. Grassl, , and L. Shi, 1995: Warm pool heat budget and shortwave cloud forcing: A missing physics. Science, 267 , 499503.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , E. B. Horton, , D. E. Parker, , C. K. Folland, , and R. B. Hackett, 1996: Version 2.2 of the global sea-ice and sea surface temperature data set, 1903–1994. Climate Research Tech. Note 74 (CRTN74), Hadley Centre for Climate Prediction and Research, Met Office, United Kingdom, 35 pp.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , and R. Murtugudde, 1997: Ocean dynamics, thermocline adjustment, and regulation of tropical SST. J. Climate, 10 , 521534.

  • Suarez, M. J., , and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45 , 32833287.

  • Sun, D-Z., 1997: El Niño: A coupled response to radiative heating? Geophys. Res. Lett., 24 , 20312034.

  • Sun, D-Z., 2000a: Global climate change and ENSO: A theoretical framework. El Niño: Historical and Paleoclimatic Aspects of the Southern Oscillation, Multiscale Variability and Global and Regional Impacts, H. F. Diaz and V. Markgraf, Eds., Cambridge University Press, 443–463.

    • Search Google Scholar
    • Export Citation
  • Sun, D-Z., 2000b: The heat sources and sinks of the 1986–87 El Niño. J. Climate, 13 , 35333550.

  • Sun, D-Z., , and Z. Liu, 1996: Dynamic ocean–atmosphere coupling: A thermostat for the Tropics. Science, 272 , 11481150.

  • Sun, D-Z., , and K. E. Trenberth, 1998: Coordinated heat removal from the equatorial Pacific during the 1986–87 El Niño. Geophys. Res. Lett., 25 , 26592662.

    • Search Google Scholar
    • Export Citation
  • Tett, S., 1995: Simulation of El Niño–Southern Oscillation-like variability in a global AOGCM and its response to CO2 increase. J. Climate, 8 , 14731502.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., , J. Oberhuber, , A. Bacher, , M. Esch, , M. Latif, , and E. Roeckner, 1999: Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature, 398 , 694697.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: Using atmospheric budgets as a constraint on surface fluxes. J. Climate, 10 , 27962809.

  • Trenberth, K. E., , J. M. Caron, , and D. P. Stepaniak, 2001: The atmospheric energy budget and implications for surface fluxes and ocean heat transports. Climate Dyn., 17 , 259276.

    • Search Google Scholar
    • Export Citation
  • Tudhope, A. W., and Coauthors. 2001: Variability in the El Niño–Southern Oscillation through a glacial–interglacial cycle. Science, 291 , 15111517.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., , P. T. Strub, , and M. D. Samuel, 1981: Annual mean surface heat fluxes in the tropical Pacific Ocean. J. Phys. Oceanogr., 11 , 705717.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1985: Water displacements in the Pacific and the genesis of El Niño cycles. J. Geophys. Res., 90 , 71297132.

  • Xu, K-M., , and K. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev., 117 , 14711479.

  • Zebiak, S. E., , and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115 , 22622278.

  • Zebiak, S. E., , and M. A. Cane, 1991: Natural climate variability in a coupled model. Greenhouse-Gas-Induced Climatic Change: A Critical Appraisal of Simulations and Observations, M.E. Schlesinger, Ed., Elsevier, 457–469.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , J. M. Wallace, , and D. S. Battisti, 1997: ENSO-like interdecadal variability. J. Climate, 10 , 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 35 35 16
PDF Downloads 24 24 12

A Possible Effect of an Increase in the Warm-Pool SST on the Magnitude of El Niño Warming

View More View Less
  • 1 NOAA–CIRES/Climate Diagnostics Center, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

El Niño warming corresponds to an eastward extension of the western Pacific warm pool; one thus naturally wonders whether an increase in the warm pool SST will result in stronger El Niños. This question, though elementary, has not drawn much attention. The observation that the two strongest El Niños in the instrumental record occurred during the last two decades, when the warm pool SST was anomalously high, however, has added some urgency to answering this question. Here observational and numerical results that support a positive answer to this question are shown.

The observational results come from an analysis of the heat balance of the tropical Pacific over the period 1980–99. The analysis confirms that El Niño acts as a major mechanism by which the tropical Pacific transports heat poleward—the poleward heat transport is achieved episodically, and those episodes correspond well with the occurrence of El Niños. Moreover, the analysis shows that El Niño is a regulator of the heat content in the western Pacific: the higher the heat content, the stronger the subsequent El Niño warming, which transports more heat poleward, and results in a larger drop in the heat content in the western Pacific. These empirical results suggest that a higher warm-pool SST may result in stronger El Niño events. Specifically, raising the tropical maximum SST through an increase in the radiative heating across the equatorial Pacific initially increases the zonal SST contrast. A stronger zonal SST contrast then strengthens the surface winds and helps to store more heat in the subsurface ocean. Because of the stronger winds and the resulting steeper tilt of the equatorial thermocline, the coupled system is potentially unstable and is poised to release its energy through a stronger El Niño warming. A stronger El Niño then pushes the accumulated heat poleward and prevents heat buildup in the western Pacific, and thereby stabilizes the coupled system.

Numerical experiments with a coupled model in which the ocean component is a primitive equation model (the NCAR Pacific basin model), and therefore explicitly calculates the heat budget of the entire equatorial upper ocean, support this suggestion. The numerical experiments further suggest that in the presence of El Niños, the time-mean zonal SST contrast may not be sensitive to increases in the surface heating because the resulting stronger El Niños cool the western Pacific and warm the eastern Pacific.

Corresponding author address: Dr. De-Zheng Sun, NOAA/ERL/CDC, (R/E/CDC1), Climate Diagnostics Center, 325 Broadway, Boulder, CO 80303. Email: ds@cdc.noaa.gov

Abstract

El Niño warming corresponds to an eastward extension of the western Pacific warm pool; one thus naturally wonders whether an increase in the warm pool SST will result in stronger El Niños. This question, though elementary, has not drawn much attention. The observation that the two strongest El Niños in the instrumental record occurred during the last two decades, when the warm pool SST was anomalously high, however, has added some urgency to answering this question. Here observational and numerical results that support a positive answer to this question are shown.

The observational results come from an analysis of the heat balance of the tropical Pacific over the period 1980–99. The analysis confirms that El Niño acts as a major mechanism by which the tropical Pacific transports heat poleward—the poleward heat transport is achieved episodically, and those episodes correspond well with the occurrence of El Niños. Moreover, the analysis shows that El Niño is a regulator of the heat content in the western Pacific: the higher the heat content, the stronger the subsequent El Niño warming, which transports more heat poleward, and results in a larger drop in the heat content in the western Pacific. These empirical results suggest that a higher warm-pool SST may result in stronger El Niño events. Specifically, raising the tropical maximum SST through an increase in the radiative heating across the equatorial Pacific initially increases the zonal SST contrast. A stronger zonal SST contrast then strengthens the surface winds and helps to store more heat in the subsurface ocean. Because of the stronger winds and the resulting steeper tilt of the equatorial thermocline, the coupled system is potentially unstable and is poised to release its energy through a stronger El Niño warming. A stronger El Niño then pushes the accumulated heat poleward and prevents heat buildup in the western Pacific, and thereby stabilizes the coupled system.

Numerical experiments with a coupled model in which the ocean component is a primitive equation model (the NCAR Pacific basin model), and therefore explicitly calculates the heat budget of the entire equatorial upper ocean, support this suggestion. The numerical experiments further suggest that in the presence of El Niños, the time-mean zonal SST contrast may not be sensitive to increases in the surface heating because the resulting stronger El Niños cool the western Pacific and warm the eastern Pacific.

Corresponding author address: Dr. De-Zheng Sun, NOAA/ERL/CDC, (R/E/CDC1), Climate Diagnostics Center, 325 Broadway, Boulder, CO 80303. Email: ds@cdc.noaa.gov

Save