Sensitivity of the First Indirect Aerosol Effect to an Increase of Cloud Droplet Spectral Dispersion with Droplet Number Concentration

Leon D. Rotstayn CSIRO Atmospheric Research, Aspendale, Victoria, Australia

Search for other papers by Leon D. Rotstayn in
Current site
Google Scholar
PubMed
Close
and
Yangang Liu Brookhaven National Laboratory, Upton, New York

Search for other papers by Yangang Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations show that an increase in anthropogenic aerosols leads to concurrent increases in the cloud droplet concentration and the relative dispersion of the cloud droplet spectrum, other factors being equal. It has been suggested that the increase in effective radius resulting from increased relative dispersion may substantially negate the indirect aerosol effect, but this is usually not parameterized in global climate models (GCMs). Empirical parameterizations, designed to represent the average of this effect, as well as its lower and upper bounds, are tested in the CSIRO GCM. Compared to a control simulation, in which the relative dispersion of the cloud droplet spectrum is prescribed separately over land and ocean, inclusion of this effect reduces the magnitude of the first indirect aerosol effect by between 12% and 35%.

Corresponding author address: Dr. Leon Rotstayn, CSIRO Atmospheric Research, PMB1, Aspendale, Victoria 3195, Australia. Email: leon.rotstayn@csiro.au

Abstract

Observations show that an increase in anthropogenic aerosols leads to concurrent increases in the cloud droplet concentration and the relative dispersion of the cloud droplet spectrum, other factors being equal. It has been suggested that the increase in effective radius resulting from increased relative dispersion may substantially negate the indirect aerosol effect, but this is usually not parameterized in global climate models (GCMs). Empirical parameterizations, designed to represent the average of this effect, as well as its lower and upper bounds, are tested in the CSIRO GCM. Compared to a control simulation, in which the relative dispersion of the cloud droplet spectrum is prescribed separately over land and ocean, inclusion of this effect reduces the magnitude of the first indirect aerosol effect by between 12% and 35%.

Corresponding author address: Dr. Leon Rotstayn, CSIRO Atmospheric Research, PMB1, Aspendale, Victoria 3195, Australia. Email: leon.rotstayn@csiro.au

Save
  • Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, 2000a: Reduction of tropical cloudiness by soot. Science, 288 , 1042–1047.

    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., O. B. Toon, J. P. Taylor, D. W. Johnson, P. V. Hobbs, and R. J. Ferek, 2000b: Effects of aerosols on cloud albedo: Evaluation of Twomey's parameterization of cloud susceptibility using measurements of ship tracks. J. Atmos. Sci., 57 , 2684–2695.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245 , 1227–1230.

  • Albrecht, B. A., D. Randall, and S. Nicholls, 1988: Observations of marine stratocumulus during FIRE. Bull. Amer. Meteor. Soc., 69 , 618–629.

    • Search Google Scholar
    • Export Citation
  • Bates, T. S., B. J. Huebert, J. L. Gras, F. B. Griffiths, and P. A. Durkee, 1998: The International Global Atmospheric Chemistry (IGAC) Project's First Aerosol Characterization Experiments (ACE1): Overview. J. Geophys. Res., 103 , 16297–16318.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and M. Spowart, 1990: Evaluation of the forward scattering spectrometer probe. Part III: Time response and laser inhomogeneity limitations. J. Atmos. Oceanic Technol., 7 , 666–672.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and H. T. Ochs III, 1993: Warm-rain initiation: An overview of microphysical mechanisms. J. Appl. Meteor., 32 , 608–625.

    • Search Google Scholar
    • Export Citation
  • Boers, R., J. B. Jensen, and P. B. Krummel, 1998: Microphysical and short-wave radiative structure of stratocumulus clouds over the Southern Ocean: Summer results and seasonal differences. Quart. J. Roy. Meteor. Soc., 124 , 151–168.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., 1995: GCM estimate of the indirect aerosol forcing using satellite-retrieved cloud droplet effective radii. J. Climate, 8 , 1403–1409.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and U. Lohmann, 1995: The sulfate-CCN-cloud albedo effect. A sensitivity study with two general circulation models. Tellus, 47B , 281–300.

    • Search Google Scholar
    • Export Citation
  • Breon, F. M., D. Tanre, and S. Generoso, 2002: Aerosol effect on cloud droplet size monitored from satellite. Science, 295 , 834–838.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., J. H. Seinfeld, A. Nenes, M. Kulmala, A. Laaksonen, and M. C. Facchini, 2001: Reshaping the theory of cloud formation. Science, 292 , 2025–2027.

    • Search Google Scholar
    • Export Citation
  • Coakley, J. J. A., and C. D. Walsh, 2002: Limits to the aerosol indirect radiative effect derived from observations of ship tracks. J. Atmos. Sci., 59 , 668–680.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., and P. Y. Chuang, 2002: Analysis of the influence of film-forming compounds on droplet growth: Implications for cloud microphysical processes and climate. J. Atmos. Sci., 59 , 2006–2018.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., and P. V. Hobbs, 1995: Droplet spectra observed in marine stratus cloud layers. J. Atmos. Sci., 52 , 2977–2984.

  • Ghan, S., and Coauthors. 2001: A physically based estimate of radiative forcing by anthropogenic sulfate aerosol. J. Geophys. Res., 106 , 5279–5293.

    • Search Google Scholar
    • Export Citation
  • Gordon, H. B., and Coauthors. 2002: The CSIRO Mk3 Climate System Model. CSIRO Atmospheric Research Tech. Paper No. 60, 134 pp. [Available online at http://www.dar.csiro.au/publications/gordon_2002a.pdf.].

    • Search Google Scholar
    • Export Citation
  • Han, Q., W. B. Rossow, and A. A. Lacis, 1994: Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 7 , 465–497.

    • Search Google Scholar
    • Export Citation
  • Han, Q., W. B. Rossow, J. Zeng, and R. Welch, 2002: Three different behaviors of liquid water path of water clouds in aerosol–cloud interactions. J. Atmos. Sci., 59 , 726–735.

    • Search Google Scholar
    • Export Citation
  • Harshvardhan, S. E. Schwartz, C. M. Benkovitz, and G. Guo, 2002: Aerosol influence on cloud microphysics examined by satellite measurements and chemical transport modeling. J. Atmos. Sci., 59 , 714–725.

    • Search Google Scholar
    • Export Citation
  • Haywood, J., and O. Boucher, 2000: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys., 38 , 513–543.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., and H. Li, 1995: Microphysical contrasts in Atlantic stratus. J. Atmos. Sci., 52 , 3031–3040.

  • Hudson, J. G., and S. S. Yum, 1997: Droplet spectral broadening in marine stratus. J. Atmos. Sci., 54 , 2642–2654.

  • Hudson, J. G., and S. S. Yum, 2001: Maritime–continental drizzle contrasts in small cumuli. J. Atmos. Sci., 58 , 915–926.

  • Jones, A., D. L. Roberts, and A. Slingo, 1994: A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols. Nature, 370 , 450–453.

    • Search Google Scholar
    • Export Citation
  • Jones, A., D. L. Roberts, M. J. Woodage, and C. E. Johnson, 2001: Indirect sulphate aerosol forcing in a climate model with an interactive sulfur cycle. J. Geophys. Res., 106 , 20293–20310.

    • Search Google Scholar
    • Export Citation
  • Kawamoto, K., T. Nakajima, and T. Y. Nakajima, 2001: A global determination of cloud microphysics with AVHRR remote sensing. J. Climate, 14 , 2054–2068.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and L. J. Miller, 1998: Early radar echoes from small, warm cumulus: Bragg and hydrometeor scattering. J. Atmos. Sci., 55 , 2974–2992.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., T. F. Stocker, F. Joos, and G. K. Plattner, 2002: Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature, 416 , 719–723.

    • Search Google Scholar
    • Export Citation
  • Kristjánsson, J. E., 2002: Studies of the aerosol indirect effect from sulfate and black carbon aerosols. J. Geophys. Res., 107 .4246, doi:10.1029/2001JD000887.

    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the earth's atmosphere. J. Atmos. Sci., 31 , 118–133.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. G., and P. H. Daum, 2000a: Spectral dispersion of cloud droplet size distributions and the parameterization of cloud droplet effective radius. Geophys. Res. Lett., 27 , 1903–1906.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. G., and P. H. Daum, 2000b: Which size distribution function to use for studies related to effective radius. Proc. 13th Int. Conf. on Clouds and Precipitation, Reno, NV, International Association of Meteorology and Atmospheric Sciences, 586–591.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. G., and P. H. Daum, 2002: Indirect warming effect from dispersion forcing. Nature, 419 , 580–581.

  • Lohmann, U., and J. Feichter, 2001: Can the direct and semi-direct aerosol effect compete with the indirect effect on a global scale? Geophys. Res. Lett., 28 , 159–161.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and G. Lesins, 2002: Stronger constraints on the anthropogenic indirect aerosol effect. Science, 298 , 1012–1015.

  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51 , 1823–1842.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and A. J. Heymsfield, 2001: Parameterization of INDOEX microphysical measurements and calculations of cloud susceptibility: Applications for climate studies. J. Geophys. Res., 106 , 28675–28698.

    • Search Google Scholar
    • Export Citation
  • Menon, S., J. Hansen, L. Nazarenko, and Y. Luo, 2002: Climate effects of black carbon aerosols in China and India. Science, 197 , 2250–2253.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., M. D. King, J. D. Spinhirne, and L. F. Radke, 1991: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part II: Marine stratocumulus observations. J. Atmos. Sci., 48 , 728–750.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., A. Higurashi, K. Kawamoto, and J. E. Penner, 2001: A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophys. Res. Lett., 28 , 1171–1174.

    • Search Google Scholar
    • Export Citation
  • Noone, K. J., and Coauthors. 2000a: A case study of ship track formation in a polluted marine boundary layer. J. Atmos. Sci., 57 , 2748–2764.

    • Search Google Scholar
    • Export Citation
  • Noone, K. J., and Coauthors. 2000b: A case study of ships forming and not forming tracks in moderately polluted clouds. J. Atmos. Sci., 57 , 2729–2747.

    • Search Google Scholar
    • Export Citation
  • Noonkester, V. R., 1984: Droplet spectra observed in marine stratus cloud layers. J. Atmos. Sci., 41 , 829–845.

  • Penner, J. E., and Coauthors. 2001: Aerosols, their direct and indirect effects. Climate Change 2001: The Scientific Basis, J. T. Houghton, et al., Eds., Cambridge University Press, 289–348.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and Coauthors. 2001: Radiative forcing of climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton, et al., Eds., Cambridge University Press, 349–416.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., 1997: A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: Description and evaluation of the microphysical processes. Quart. J. Roy. Meteor. Soc., 123 , 1227–1282.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., 1999: Indirect forcing by anthropogenic aerosols: A global climate model calculation of the effective-radius and cloud-lifetime effects. J. Geophys. Res., 104 , 9369–9380.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., and J. E. Penner, 2001: Indirect aerosol forcing, quasi-forcing and climate response. J. Climate, 14 , 2960–2975.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., and U. Lohmann, 2002: Simulation of the tropospheric sulfur cycle in a global model with a physically based cloud scheme. J. Geophys. Res., 107 .4592, doi:10.1029/2002JD002128.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., B. F. Ryan, and J. J. Katzfey, 2000: A scheme for calculation of the liquid fraction in mixed-phase stratiform clouds in large-scale models. Mon. Wea. Rev., 128 , 1070–1088.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., 1989: A GCM parameterization for the shortwave radiative properties of water clouds. J. Atmos. Sci., 46 , 1419–1427.

  • Srivastava, R. C., 1991: Growth of cloud drops by condensation: Effect of surface tension on the dispersion of drop sizes. J. Atmos. Sci., 48 , 1596–1605.

    • Search Google Scholar
    • Export Citation
  • Szczodrak, M., P. H. Austin, and P. B. Krummel, 2001: Variability of optical depth and effective radius in marine stratocumulus clouds. J. Atmos. Sci., 58 , 2912–2926.

    • Search Google Scholar
    • Export Citation
  • Telford, J. W., 1996: Cloud with turbulence: The role of entrainment. Atmos. Res., 40 , 261–282.

  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34 , 1149–1152.

  • Wood, R., S. Irons, and P. R. Jonas, 2002: How important is the spectral ripening effect in stratiform boundary layer clouds? Studies using simple trajectory analysis. J. Atmos. Sci., 59 , 2681–2693.

    • Search Google Scholar
    • Export Citation
  • Yum, S. S., and J. G. Hudson, 2001: Microphysical relationships in warm clouds. Atmos. Res., 57 , 81–104.

  • Zhang, Y. P., S. M. Kreidenweis, and G. Feingold, 1999: Stratocumulus processing of gases and cloud condensation nuclei 2. Chemistry sensitivity analysis. J. Geophys. Res., 104 , 16061–16080.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 963 400 92
PDF Downloads 417 94 16