The Amplification of East Pacific Madden–Julian Oscillation Convection and Wind Anomalies during June–November

Eric D. Maloney College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Eric D. Maloney in
Current site
Google Scholar
PubMed
Close
and
Steven K. Esbensen College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Steven K. Esbensen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Madden–Julian oscillation (MJO) wind and convection anomalies are locally amplified over the northeast Pacific warm pool during June–November. Composite analysis using NCEP reanalysis data indicates that perturbation available potential energy (PAPE) production through the positive correlation of intraseasonal temperature and convective diabatic heating anomalies supports the local intensification of MJO-related east Pacific warm pool wind anomalies. PAPE production is maximum during periods of strong MJO convection and low-level westerly wind perturbations. PAPE is converted to perturbation kinetic energy through positive correlations between intraseasonal temperature and vertical velocity. Microwave Sounding Unit (MSU) temperature and NOAA outgoing longwave radiation data support the energy budget results derived from NCEP reanalysis.

The amplified east Pacific circulation enhances surface convergence and latent heat flux anomalies during MJO convective periods. The surface convergence anomalies have a strong frictional component. Intraseasonal surface convergence and latent heat flux anomalies are strongly correlated (greater than 0.7) with the negative outgoing longwave radiation anomalies that is associated with east Pacific MJO convective regions. Surface latent heat and convergence variations may therefore be important in modulating MJO convective anomalies over the east Pacific during June–November. Enhanced surface flux and convergence anomalies associated with an enhanced surface circulation may intensify MJO convection, thereby creating a feedback loop that leads to the further intensification of local wind and convection anomalies. Work with mesoscale or general circulation models is needed to confirm that surface latent heat and convergence variations are indeed important for modulating east Pacific MJO convection.

Enhanced MJO convection over the boreal summer east Pacific is accompanied by positive water vapor anomalies throughout the troposphere. Column precipitable water anomalies from both NASA Water Vapor Project (NVAP) and NCEP reanalysis are in phase with MJO convection anomalies over the east Pacific. These results support the observations of previous studies that the equatorial troposphere must be sufficiently moistened before significant MJO deep convection can occur. The strongest NCEP reanalysis specific humidity anomalies at lower levels are collocated with positive surface latent heat flux and surface convergence anomalies.

Corresponding author address: Eric D. Maloney, College of Oceanic and Atmospheric Sciences, Oregon State University, 104 Ocean Admin. Building, Corvallis, OR 97331-5503. Email: maloney@coas.oregonstate.edu

Abstract

Madden–Julian oscillation (MJO) wind and convection anomalies are locally amplified over the northeast Pacific warm pool during June–November. Composite analysis using NCEP reanalysis data indicates that perturbation available potential energy (PAPE) production through the positive correlation of intraseasonal temperature and convective diabatic heating anomalies supports the local intensification of MJO-related east Pacific warm pool wind anomalies. PAPE production is maximum during periods of strong MJO convection and low-level westerly wind perturbations. PAPE is converted to perturbation kinetic energy through positive correlations between intraseasonal temperature and vertical velocity. Microwave Sounding Unit (MSU) temperature and NOAA outgoing longwave radiation data support the energy budget results derived from NCEP reanalysis.

The amplified east Pacific circulation enhances surface convergence and latent heat flux anomalies during MJO convective periods. The surface convergence anomalies have a strong frictional component. Intraseasonal surface convergence and latent heat flux anomalies are strongly correlated (greater than 0.7) with the negative outgoing longwave radiation anomalies that is associated with east Pacific MJO convective regions. Surface latent heat and convergence variations may therefore be important in modulating MJO convective anomalies over the east Pacific during June–November. Enhanced surface flux and convergence anomalies associated with an enhanced surface circulation may intensify MJO convection, thereby creating a feedback loop that leads to the further intensification of local wind and convection anomalies. Work with mesoscale or general circulation models is needed to confirm that surface latent heat and convergence variations are indeed important for modulating east Pacific MJO convection.

Enhanced MJO convection over the boreal summer east Pacific is accompanied by positive water vapor anomalies throughout the troposphere. Column precipitable water anomalies from both NASA Water Vapor Project (NVAP) and NCEP reanalysis are in phase with MJO convection anomalies over the east Pacific. These results support the observations of previous studies that the equatorial troposphere must be sufficiently moistened before significant MJO deep convection can occur. The strongest NCEP reanalysis specific humidity anomalies at lower levels are collocated with positive surface latent heat flux and surface convergence anomalies.

Corresponding author address: Eric D. Maloney, College of Oceanic and Atmospheric Sciences, Oregon State University, 104 Ocean Admin. Building, Corvallis, OR 97331-5503. Email: maloney@coas.oregonstate.edu

Save
  • Bladé, I., and D. L. Hartmann, 1993: Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50 , 29222939.

  • Brown, R. G., and C. Zhang, 1997: Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54 , 27602774.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. H. Freilich, and S. K. Esbensen, 2000: Satellite observations of the wind jets off the Pacific coast of Central America. Part I: Case studies and statistical characteristics. Mon. Wea. Rev., 128 , 19932018.

    • Search Google Scholar
    • Export Citation
  • Colon, E., J. Lindesay, and M. J. Suarez, 2002: The impact of surface flux- and circulation-driven feedbacks on simulated Madden–Julian oscillations. J. Climate, 15 , 624641.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the Tropics. J. Atmos. Sci., 44 , 23242340.

  • Fuchs, Z., and D. J. Raymond, 2002: Large-scale modes of a nonrotating atmosphere with water vapor and cloud–radiation feedbacks. J. Atmos. Sci., 59 , 16691679.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1990: The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. J. Atmos. Sci., 47 , 29092923.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51 , 22252237.

  • Higgins, R. W., and W. Shi, 2001: Intercomparison of the principal modes of interannual and intraseasonal variability of the North American monsoon system. J. Climate, 14 , 403417.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3d ed. Academic Press, 511 pp.

  • Hu, Q., and D. A. Randall, 1994: Low-frequency oscillations in radiative-convective systems. J. Atmos. Sci., 51 , 10891099.

  • Jones, C., and B. C. Weare, 1996: The role of low-level moisture convergence and ocean latent heat fluxes in the Madden–Julian oscillation: An observational analysis using ISCCP data and ECMWF analyses. J. Climate, 9 , 30863104.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors. 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kayano, M. T., and V. E. Kousky, 1999: Intraseasonal (30–60 day) variability in the global Tropics: Principal modes and their evolution. Tellus, 51A , 373386.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S. R., and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14 , 780793.

  • Kutzbach, J. E., 1967: Empirical eigenvectors of sea-level pressure, surface temperature, and precipitation complexes over North America. J. Appl. Meteor., 6 , 791802.

    • Search Google Scholar
    • Export Citation
  • Lau, K-H., and N-C. Lau, 1992: The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 120 , 25232539.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing long-wave radiation dataset. Bull. Amer. Meteor. Soc., 77 , 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and R. H. Johnson, 1996: Heating, moistening, and rainfall over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53 , 33673383.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the Tropics. J. Atmos. Sci., 44 , 24182436.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

  • Magaña, V., J. A. Amador, and S. Medina, 1999: The midsummer drought over Mexico and Central America. J. Climate, 12 , 15771588.

  • Maloney, E. D., 2002: An intraseasonal oscillation composite life cycle in the NCAR CCM3.6 with modified convection. J. Climate, 15 , 964982.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11 , 23872403.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13 , 14511460.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58 , 25452558.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and J. T. Kiehl, 2002a: MJO-related SST variations over the tropical eastern Pacific during Northern Hemisphere summer. J. Climate, 15 , 675689.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and J. T. Kiehl, 2002b: Intraseasonal eastern Pacific precipitation and SST variations in a GCM coupled to a slab ocean model. J. Climate, 15 , 29893007.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and M. J. Dickinson, 2003: The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic-scale disturbances. J. Atmos. Sci., 60 , 21532168.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57 , 15151535.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and P. Zuidema, 1996: Radiative-dynamical consequences of dry tongues in the tropical troposphere. J. Atmos. Sci., 53 , 620638.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2000: Planetary- and synoptic-scale influences on eastern Pacific tropical cyclogenesis. Mon. Wea. Rev., 128 , 32963307.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation-wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44 , 23412348.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110 , 699706.

    • Search Google Scholar
    • Export Citation
  • Randel, D. L., T. H. Vonder Haar, M. A. Ringerud, G. L. Stephens, T. J. Greenwald, and C. L. Combs, 1996: A new global water vapor dataset. Bull. Amer. Meteor. Soc., 77 , 12331246.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58 , 28072819.

  • Salby, M. L., and H. H. Hendon, 1994: Intraseasonal behavior of clouds, temperature, and motion in the Tropics. J. Atmos. Sci., 51 , 22202237.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., R. R. Garcia, and H. H. Hendon, 1994: Planetary-scale circulations in the presence of climatological and wave-induced heating. J. Atmos. Sci., 51 , 23442367.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., and Coauthors. 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12 , 325357.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., J. R. Christy, and N. C. Grody, 1990: Global atmospheric temperature monitoring with satellite microwave measurements: Method and results 1979–84. J. Climate, 3 , 11111128.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003: Interactions between the boreal summer intraseasonal oscillation and higher-frequency tropical wave activity. Mon. Wea. Rev., 131 , 781796.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., K. M. Lau, and J-H. Kim, 1999: The influence of coupled sea surface temperatures on the Madden–Julian oscillation: A model perturbation experiment. J. Atmos. Sci., 56 , 333358.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Xie, S. C., and M. H. Zhang, 2000: Impact of the convection triggering function on single-column model simulations. J. Geophys. Res., 105 , 1498314996.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., B. Chen, and W-W. Tung, 2000: The Madden–Julian oscillation observed during the TOGA COARE IOP: Global view. J. Atmos. Sci., 57 , 23742396.

    • Search Google Scholar
    • Export Citation
  • Zehnder, J. A., 1991: The interaction of planetary-scale tropical easterly waves with topography: A mechanism for the initiation of tropical cyclones. J. Atmos. Sci., 48 , 12171230.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 1996: Atmospheric intraseasonal variability at the surface in the tropical western Pacific Ocean. J. Atmos. Sci., 53 , 739758.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 442 71 5
PDF Downloads 113 25 4