A Tropical Ocean Recharge Mechanism for Climate Variability. Part II: A Unified Theory for Decadal and ENSO Modes

Xiaochun Wang Department of Meteorology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Xiaochun Wang in
Current site
Google Scholar
PubMed
Close
,
Fei-Fei Jin Department of Meteorology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Fei-Fei Jin in
Current site
Google Scholar
PubMed
Close
, and
Yuqing Wang International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Yuqing Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Decadal to interdecadal timescale variability in the Pacific region, commonly referred to as the Pacific decadal oscillation (PDO), is studied in this research using analytical and numerical models. A coupled analytical model is formulated to analyze the physical mechanism of both the PDO and ENSO. It has the equatorial β-plane dynamics of a reduced-gravity model coupled with the wind stress of fixed spatial patterns. The amplitude of the latter is proportional to the sea surface temperature (SST) anomaly in the eastern equatorial Pacific. The SST anomaly is governed by a simple thermal dynamic equation used for ENSO modeling. It is found that when a warm SST is coupled with cyclonic wind stress patterns in the eastern subtropical Pacific, an oscillation with a timescale of around 10–15 yr could be generated. In contrast, when a warm SST is coupled with only a westerly wind stress in the central equatorial Pacific, an ENSO-like oscillation could be generated with a timescale of around 3–5 yr. Thus the present research is potentially relevant to aspects of the PDO and the mechanism of the PDO may be understood as a weakly coupled decadal recharge oscillator similar to the recharge oscillator dynamics of ENSO. The sensitivity of these two kinds of coupled modes to different parameters is tested. Numerical integrations with the reduced-gravity shallow-water model in a rectangular basin and a similar coupled framework confirm the results of the analytical model.

Current affiliation: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Corresponding author address: Dr. Xiaochun Wang, Jet Propulsion Laboratory, M/S 300-323, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109. Email: xiao@pacific.jpl.nasa.gov

Abstract

Decadal to interdecadal timescale variability in the Pacific region, commonly referred to as the Pacific decadal oscillation (PDO), is studied in this research using analytical and numerical models. A coupled analytical model is formulated to analyze the physical mechanism of both the PDO and ENSO. It has the equatorial β-plane dynamics of a reduced-gravity model coupled with the wind stress of fixed spatial patterns. The amplitude of the latter is proportional to the sea surface temperature (SST) anomaly in the eastern equatorial Pacific. The SST anomaly is governed by a simple thermal dynamic equation used for ENSO modeling. It is found that when a warm SST is coupled with cyclonic wind stress patterns in the eastern subtropical Pacific, an oscillation with a timescale of around 10–15 yr could be generated. In contrast, when a warm SST is coupled with only a westerly wind stress in the central equatorial Pacific, an ENSO-like oscillation could be generated with a timescale of around 3–5 yr. Thus the present research is potentially relevant to aspects of the PDO and the mechanism of the PDO may be understood as a weakly coupled decadal recharge oscillator similar to the recharge oscillator dynamics of ENSO. The sensitivity of these two kinds of coupled modes to different parameters is tested. Numerical integrations with the reduced-gravity shallow-water model in a rectangular basin and a similar coupled framework confirm the results of the analytical model.

Current affiliation: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Corresponding author address: Dr. Xiaochun Wang, Jet Propulsion Laboratory, M/S 300-323, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109. Email: xiao@pacific.jpl.nasa.gov

Save
  • Battisti, D. S., 1988: The dynamics and thermodynamics of a warm event in a coupled atmosphere–ocean model. J. Atmos. Sci., 45 , 28892919.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in the tropical atmosphere-ocean system: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46 , 16871712.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., and D. W. Moore, 1981: A note on low frequency equatorial basin modes. J. Phys. Oceanogr., 11 , 15781584.

  • Cane, M. A., M. Münnich, and S. Zebiak, 1990: A study of self-excited oscillations of the tropical ocean–atmosphere system. Part I: Linear analysis. J. Atmos. Sci., 47 , 15621577.

    • Search Google Scholar
    • Export Citation
  • Chao, Y., M. Ghil, and J. C. McWilliams, 2000: Pacific interdecadal variability in this century's sea surface temperatures. Geophys. Res. Lett., 27 , 22612264.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 1996: Upper-ocean thermal variations in the North Pacific during 1970–91. J. Climate, 9 , 18401855.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., P. Müller, and E. Zorita, 1997: A simple model of the decadal response of the ocean to stochastic wind forcing. J. Phys. Oceanogr., 27 , 15331546.

    • Search Google Scholar
    • Export Citation
  • Gu, D., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275 , 805807.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models. Part I: Theory. Tellus, 28 , 473485.

  • Jin, F-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Jin, F-F., 1997b: An equatorial recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54 , 830845.

  • Jin, F-F., 1997c: A theory of interdecadal climate variability of the North Pacific ocean–atmosphere system. J. Climate, 10 , 18211835.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., 2001: Low-frequency modes of tropical ocean dynamics. J. Climate, 14 , 38743881.

  • Jin, F-F., and J. D. Neelin, 1993: Modes of interannual tropical ocean–atmosphere interaction—A unified view. Part I: Numerical results. J. Atmos. Sci., 50 , 34773503.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., M. Kimoto, and X. Wang, 2001: A model of decadal ocean–atmosphere interaction in the North Pacific basin. Geophys. Res. Lett., 28 , 15311534.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors. 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kleeman, R., J. P. McCreary, and B. A. Klinger, 1999: A mechanism for generating ENSO decadal variability. Geophys. Res. Lett., 26 , 17431746.

    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., J. P. McCreary, and R. Kleeman, 2002: The relationship between oscillating subtropical wind stress and equatorial temperature. J. Phys. Oceanogr., 32 , 15071521.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and S. Manabe, 1998: Model assessment of decadal variability and trends in the tropical Pacific Ocean. J. Climate, 11 , 22732296.

    • Search Google Scholar
    • Export Citation
  • Latif, M., 1998: Dynamics of interdecadal variability in coupled ocean–atmosphere models. J. Climate, 11 , 602624.

  • Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266 , 634637.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1996: Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J. Climate, 9 , 24072423.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and R-H. Zhang, 1999: Propagation and mechanism of decadal upper-ocean variability in the North Pacific. Geophys. Res. Lett., 26 , 739742.

    • Search Google Scholar
    • Export Citation
  • Lu, P., J. P. McCreary Jr., and B. A. Klinger, 1998: Meridional circulation cells and the source waters of the Pacific Equatorial Undercurrent. J. Phys. Oceanogr., 28 , 6284.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78 , 10691079.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., and N. Schneider, 2000: Interdecadal climate regime dynamics in the North Pacific Ocean: Theories, observations and ecosystem impacts. Progress in Oceanography, Vol. 47, Pergamon, 355–379.

    • Search Google Scholar
    • Export Citation
  • Moore, D. W., and S. G. H. Philander, 1977: Modeling of the tropical oceanic circulation. The Sea, E. D. Goldberg, Ed., Marine-Modeling, Vol. 6, Wiley and Sons, 319–361.

    • Search Google Scholar
    • Export Citation
  • Münnich, M., M. A. Cane, and S. Zebiak, 1991: A study of self-excited oscillations of the tropical ocean–atmosphere system. Part II: Nonlinear cases. J. Atmos. Sci., 48 , 12381248.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., G. Lin, and T. Yamagata, 1997: Decadal climate variability in the North Pacific during the recent decades. Bull. Amer. Meteor. Soc., 78 , 22152225.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1969: Seasonal interactions between the North Pacific Ocean and the atmosphere during the 1960's. Mon. Wea. Rev., 97 , 173192.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and F-F. Jin, 1993: Modes of interannual tropical ocean–atmosphere interaction—A unified view. Part II: Analytical results in the weak-coupling limit. J. Atmos. Sci., 50 , 35043522.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and W. J. Weng, 1999: Analytical prototype for ocean–atmosphere interaction at midlatitudes. Part I: Coupled feedbacks as a sea surface temperature dependent stochastic process. J. Climate, 12 , 697721.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 , 1426114290.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., and S-P. Xie, 2000: Propagation of North Pacific interdecadal subsurface temperature anomalies in an ocean GCM. Geophys. Res. Lett., 27 , 37473750.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., S-P. Xie, and J. P. McCreary, 2002: Decadal variations in the subtropical cells and equatorial Pacific SST. Geophys. Res. Lett., 29 .1116, doi:10.1029/2001GL013717.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and Z. Sun, 1985: A modelling and observational study of the relationship between sea surface temperature in the northwest Atlantic and atmospheric general circulation. Quart. J. Roy. Meteor. Soc., 111 , 947975.

    • Search Google Scholar
    • Export Citation
  • Peng, S., and J. S. Whitaker, 1999: Mechanisms determining the atmospheric response to midlatitude SST anomalies. J. Climate, 12 , 13931408.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 2000: Review of WETS—The workshop on extratropical SST anomalies. Bull. Amer. Meteor. Soc., 81 , 567577.

  • Saravanan, R., and J. C. McWilliams, 1997: Stochasticity and spatial resonance in interdecadal climate fluctuations. J. Climate, 10 , 22992320.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., A. J. Miller, M. A. Alexander, and C. Deser, 1999: Subduction of decadal North Pacific temperature anomalies: Observations and dynamics. J. Phys. Oceanogr., 29 , 10561070.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., and M. J. Suarez, 1988: Vacillations in a coupled ocean–atmosphere model. J. Atmos. Sci., 45 , 549566.

  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45 , 32833287.

  • Ting, M., and S. Peng, 1995: Dynamics of the early and middle winter atmospheric responses to the northwest Atlantic SST anomalies. J. Climate, 8 , 22392254.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–ocean variation in the Pacific. Climate Dyn., 9 , 303319.

  • van der Vaart, P. C. F., H. A. Dijkstra, and F-F. Jin, 2000: The Pacific cold tongue and the ENSO mode: A unified theory within the Zebiak–Cane model. J. Atmos. Sci., 57 , 967988.

    • Search Google Scholar
    • Export Citation
  • Wang, X., F-F. Jin, and Y. Wang, 2003: A tropical ocean recharge mechanism for climate variability. Part I: Equatorial heat content changes induced by the off-equatorial wind. J. Climate, 16 , 35853598.

    • Search Google Scholar
    • Export Citation
  • Weng, W. J., and J. D. Neelin, 1999: Analytical prototype for ocean–atmosphere interaction at midlatitudes. Part II: Mechanisms for coupled gyre modes. J. Climate, 12 , 27572774.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., M. Endoh, Y. Kitamura, A. Kitoh, T. Motoi, and A. Noda, 2000: ENSO-like interdecadal variability in the Pacific Ocean as simulated in a coupled general circulation model. J. Geophys. Res., 105 , 1394513963.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10 , 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 321 83 9
PDF Downloads 98 45 4