Seamless Poleward Atmospheric Energy Transports and Implications for the Hadley Circulation

Kevin E. Trenberth National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Kevin E. Trenberth in
Current site
Google Scholar
PubMed
Close
and
David P. Stepaniak National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by David P. Stepaniak in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A detailed vertically integrated atmospheric heat and energy budget is presented along with estimated heat budgets at the surface and top-of-atmosphere for the subtropics. It is shown that the total energy transports are remarkably seamless in spite of greatly varying mechanisms. From the Tropics to about 31° latitude, the primary transport mechanisms are the Hadley and Walker overturning circulations. In the extratropics the energy transports are carried out by baroclinic eddies broadly organized into storm tracks and quasi-stationary waves that covary in a symbiotic way as the location and activity in storm tracks are determined by, and in turn help maintain through eddy transports, the quasi-stationary flow. In the upward branch of the Hadley cell, the predominant diabatic process is latent heating that results from convergence of moisture by the circulation itself. Hence large poleward transports of dry static energy are compensated by equatorward transports of latent energy, resulting in a modest poleward transport of moist static energy. The subsidence warming in the downward branch is compensated by cooling in the subtropics that mainly arises from energy transport to higher latitudes by transient baroclinic eddies that are stronger in the winter hemisphere. Effectively, the outgoing longwave radiation to space is distributed over middle and high latitudes and is not limited to the clear dry regions in the subtropics. Further, some of the radiative cooling in the subtropics is a consequence of the circulation. Hence the cooling by transient eddies in the subtropics is a fundamental driver of the observed Hadley circulation and realizes the seamless transport from Tropics to extratropics, while tropical sea surface temperatures over the oceans determine where the upward branch is located. The relatively clear skies in the subtropics further provide for ample absorption of solar radiation at the surface where it feeds strong evaporation, which exceeds precipitation, and supplies the equatorward flow of latent energy into the upward branch of the Hadley circulation as well as the poleward transports into midlatitude storm tracks. The evaporation is sufficiently strong that it is also compensated by a subsurface ocean heat transport that in turn is driven by the Hadley circulation surface winds.

Corresponding author address: Dr. Kevin E. Trenberth, Climate Analysis Section, NCAR, P.O. Box 3000, Boulder, CO 80307-3000. Email: trenbert@ucar.edu

Abstract

A detailed vertically integrated atmospheric heat and energy budget is presented along with estimated heat budgets at the surface and top-of-atmosphere for the subtropics. It is shown that the total energy transports are remarkably seamless in spite of greatly varying mechanisms. From the Tropics to about 31° latitude, the primary transport mechanisms are the Hadley and Walker overturning circulations. In the extratropics the energy transports are carried out by baroclinic eddies broadly organized into storm tracks and quasi-stationary waves that covary in a symbiotic way as the location and activity in storm tracks are determined by, and in turn help maintain through eddy transports, the quasi-stationary flow. In the upward branch of the Hadley cell, the predominant diabatic process is latent heating that results from convergence of moisture by the circulation itself. Hence large poleward transports of dry static energy are compensated by equatorward transports of latent energy, resulting in a modest poleward transport of moist static energy. The subsidence warming in the downward branch is compensated by cooling in the subtropics that mainly arises from energy transport to higher latitudes by transient baroclinic eddies that are stronger in the winter hemisphere. Effectively, the outgoing longwave radiation to space is distributed over middle and high latitudes and is not limited to the clear dry regions in the subtropics. Further, some of the radiative cooling in the subtropics is a consequence of the circulation. Hence the cooling by transient eddies in the subtropics is a fundamental driver of the observed Hadley circulation and realizes the seamless transport from Tropics to extratropics, while tropical sea surface temperatures over the oceans determine where the upward branch is located. The relatively clear skies in the subtropics further provide for ample absorption of solar radiation at the surface where it feeds strong evaporation, which exceeds precipitation, and supplies the equatorward flow of latent energy into the upward branch of the Hadley circulation as well as the poleward transports into midlatitude storm tracks. The evaporation is sufficiently strong that it is also compensated by a subsurface ocean heat transport that in turn is driven by the Hadley circulation surface winds.

Corresponding author address: Dr. Kevin E. Trenberth, Climate Analysis Section, NCAR, P.O. Box 3000, Boulder, CO 80307-3000. Email: trenbert@ucar.edu

Save
  • Andrews, D. G., J. R. Holton, and C. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysical Series, Vol. 40, Academic Press, 489 pp.

    • Search Google Scholar
    • Export Citation
  • Branstator, G. W., 1995: Organization of stormtrack anomalies by recurring low-frequency circulation anomalies. J. Atmos. Sci., 52 , 207226.

    • Search Google Scholar
    • Export Citation
  • Chang, C-P., and K-M. Lau, 1980: Northeasterly cold surges and near-equatorial disturbances over the winter MONEX area during December. Part II: Large-scale aspects. Mon. Wea. Rev., 108 , 298312.

    • Search Google Scholar
    • Export Citation
  • Chang, C-P., and K-M. Lau, 1982: Short-term planetary-scale interactions over the Tropics and midlatitudes during northern winter. Part I: Contrasts between active and inactive periods. Mon. Wea. Rev., 110 , 933946.

    • Search Google Scholar
    • Export Citation
  • Chen, P., M. P. Hoerling, and R. M. Dole, 2001: The origin of subtropical anticyclones. J. Atmos. Sci., 58 , 18271835.

  • Compo, G. P., G. N. Kiladis, and P. J. Webster, 1999: The horizontal and vertical structure of east Asian winter monsoon pressure surges. Quart. J. Roy. Meteor. Soc., 125 , 2954.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., 2003: Role of continents in driving the Hadley cells. J. Atmos. Sci., 60 , 957976.

  • Emanuel, K. A., 1995: On thermally direct circulations in moist atmospheres. J. Atmos. Sci., 52 , 15291534.

  • Fang, M., and K. K. Tung, 1999: Time-dependent nonlinear Hadley circulation. J. Atmos. Sci., 56 , 17971807.

  • Garreaud, R. D., 2001: Subtropical cold surges: Regional aspects and global distribution. Int. J. Climatol., 21 , 11811197.

  • Held, I. M., 2001: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci., 58 , 943948.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37 , 515533.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., 1996: On the existence and strength of the summer subtropical anticyclones. Bull. Amer. Meteor. Soc., 77 , 12871292.

  • Hou, A. Y., and R. S. Lindzen, 1992: The influence of concentrated heating on the Hadley circulation. J. Atmos. Sci., 49 , 12331241.

  • Josey, S. A., E. C. Kent, and P. K. Taylor, 1998: The Southampton Oceanography Centre (SOC) Ocean-Atmosphere Heat, Momentum and Freshwater Flux Atlas. Southampton Oceanography Centre Rep. 6, 30 pp.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., E. C. Kent, and P. K. Taylor, 1999: New insights into the ocean heat budget closure problem from analysis of the SOC air–sea flux climatology. J. Climate, 12 , 28562880.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors. 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kang, I-S., C-H. Ho, Y-K. Lim, and K-M. Lau, 1999: Principal modes of climatological seasonal and intraseasonal variations of the Asian summer monsoon. Mon. Wea. Rev., 127 , 322340.

    • Search Google Scholar
    • Export Citation
  • Kim, H-K., and S. Lee, 2001: Hadley cell dynamics in a primitive equation model. Part II: Nonaxisymmetric flow. J. Atmos. Sci., 58 , 28592871.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., K. M. Kim, and S. Yang, 2000: Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Climate, 13 , 24612482.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and A. Y. Hou, 1988: Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45 , 24162427.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., M-D. Chou, and A. Y. Hou, 2001: Does the earth have an adaptive infrared iris? Bull. Amer. Meteor. Soc., 82 , 417432.

  • Lorenz, E. N., 1967: The Nature and Theory of the General Circulation of the Atmosphere. World Meteorological Organization, 161 pp.

  • Newell, R. E., J. W. Kidson, D. G. Vincent, and G. J. Boer, 1974: The General Circulation of the Tropical Atmosphere and Interactions with Extratropical Latitudes. Vol. 2. The MIT Press, 370 pp.

    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1956: The general circulation of the atmosphere: A numerical experiment. Quart. J. Roy. Meteor. Soc., 82 , 123164.

  • Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci., 52 , 17841806.

  • Pierrehumbert, R. T., 1999: Subtropical water vapor as a mediator of rapid global climate change. Mechanisms of Global Change at Millennial Time Scales, P. U. Clark, R. S. Webb, and L. D. Keigwin, Eds., Geophysical Monograph Series, Vol. 112, Amer. Geophys. Union, 394 pp.

    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1971: Monsoon Meteorology. Academic Press, 296 pp.

  • Rodwell, M. J., and B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122 , 13851404.

  • Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14 , 31923211.

  • Salathé, E. P., and D. L. Hartmann, 1997: A trajectory analysis of tropical upper-tropospheric moisture and convection. J. Climate, 10 , 25332547.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., 1977: Axially symmetric steady-state models of the basic state for instability and climate studies. Part II: Nonlinear calculations. J. Atmos. Sci., 34 , 280296.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., 1984: Response of the annual and zonal mean winds and temperatures to variations in the heat and momentum sources. J. Atmos. Sci., 41 , 10931115.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., 1987: A simplified model of the modified Hadley circulation. J. Atmos. Sci., 44 , 33113328.

  • Slingo, J. M., 1998: Extratropical forcing of tropical convection in a northern winter simulation with the UGAMP GCM. Quart. J. Roy. Meteor. Soc., 124 , 2751.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., and W. D. Braswell, 1997: How dry is the tropical free troposphere? Implications for global warming theory. Bull. Amer. Meteor. Soc., 78 , 10971106.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1978: Constraints on dynamical transports of energy on a spherical planet. Dyn. Atmos. Oceans, 2 , 123139.

  • Trenberth, K. E., 1997: Using atmospheric budgets as a constraint on surface fluxes. J. Climate, 10 , 27962809.

  • Trenberth, K. E., and A. Solomon, 1994: The global heat balance: Heat transports in the atmosphere and ocean. Climate Dyn., 10 , 107134.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1995: Evaluation of the global atmospheric moisture budget as seen from analyses. J. Climate, 8 , 22552272.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1998: Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses. Climate Dyn., 14 , 213231.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14 , 34333443.

  • Trenberth, K. E., and D. P. Stepaniak, 2003: Covariability of components of poleward atmospheric energy transports on seasonal and interannual timescales. J. Climate, 16 , 36913705.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103 , 1429114324.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., D. P. Stepaniak, and J. M. Caron, 2000: The global monsoon as seen through the divergent atmospheric circulation. J. Climate, 13 , 39693993.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. M. Caron, and D. P. Stepaniak, 2001: The atmospheric energy budget and implications for surface fluxes and ocean heat transports. Climate Dyn., 17 , 259276.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., D. P. Stepaniak, and J. M. Caron, 2002: Accuracy of atmospheric energy budgets. J. Climate, 15 , 33433360.

  • van Loon, H., 1979: The association between latitudinal temperature gradient and eddy transport. Part I: Transport of sensible heat in winter. Mon. Wea. Rev., 107 , 525534.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Yang, S., K. M. Lau, and K. M. Kim, 2002: Variations of the East Asian jet stream and Asian–Pacific–American winter climate anomalies. J. Climate, 15 , 306325.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 961 336 36
PDF Downloads 704 293 31