Comparison of Two Methods for Estimating the Sampling-Related Uncertainty of Satellite Rainfall Averages Based on a Large Radar Dataset

Matthias Steiner Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Matthias Steiner in
Current site
Google Scholar
PubMed
Close
,
Thomas L. Bell Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Thomas L. Bell in
Current site
Google Scholar
PubMed
Close
,
Yu Zhang Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Yu Zhang in
Current site
Google Scholar
PubMed
Close
, and
Eric F. Wood Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Eric F. Wood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The uncertainty of rainfall estimated from averages of discrete samples collected by a satellite is assessed using a multiyear radar dataset covering a large portion of the United States. The sampling-related uncertainty of rainfall estimates is evaluated for all combinations of 100-, 200-, and 500-km space domains; 1-, 5-, and 30-day rainfall accumulations; and regular sampling time intervals of 1, 3, 6, 8, and 12 h. These extensive analyses are combined to characterize the sampling uncertainty as a function of space and time domain, sampling frequency, and rainfall characteristics by means of a simple scaling law. Moreover, it is shown that both parametric and nonparametric statistical techniques of estimating the sampling uncertainty produce comparable results. Sampling uncertainty estimates, however, do depend on the choice of technique for obtaining them. They can also vary considerably from case to case, reflecting the great variability of natural rainfall, and should therefore be expressed in probabilistic terms. Rainfall calibration errors are shown to affect comparison of results obtained by studies based on data from different climate regions and/or observation platforms.

Corresponding author address: Dr. Matthias Steiner, Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544. Email: msteiner@princeton.edu

Abstract

The uncertainty of rainfall estimated from averages of discrete samples collected by a satellite is assessed using a multiyear radar dataset covering a large portion of the United States. The sampling-related uncertainty of rainfall estimates is evaluated for all combinations of 100-, 200-, and 500-km space domains; 1-, 5-, and 30-day rainfall accumulations; and regular sampling time intervals of 1, 3, 6, 8, and 12 h. These extensive analyses are combined to characterize the sampling uncertainty as a function of space and time domain, sampling frequency, and rainfall characteristics by means of a simple scaling law. Moreover, it is shown that both parametric and nonparametric statistical techniques of estimating the sampling uncertainty produce comparable results. Sampling uncertainty estimates, however, do depend on the choice of technique for obtaining them. They can also vary considerably from case to case, reflecting the great variability of natural rainfall, and should therefore be expressed in probabilistic terms. Rainfall calibration errors are shown to affect comparison of results obtained by studies based on data from different climate regions and/or observation platforms.

Corresponding author address: Dr. Matthias Steiner, Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544. Email: msteiner@princeton.edu

Save
  • Astin, I., 1997: A survey of studies into errors in large scale space-time averages of rainfall, cloud cover, sea surface processes and the Earth's radiation budget as derived from low Earth orbit satellite instruments because of their incomplete temporal and spatial coverage. Surv. Geophys., 18 , 385–403.

    • Search Google Scholar
    • Export Citation
  • Bell, T. L., 1987: A space-time stochastic model of rainfall for satellite remote-sensing studies. J. Geophys. Res., 92D , 9631–9643.

    • Search Google Scholar
    • Export Citation
  • Bell, T. L., and P. K. Kundu, 1996: A study of the sampling error in satellite rainfall estimates using optimal averaging of data and a stochastic model. J. Climate, 9 , 1251–1268.

    • Search Google Scholar
    • Export Citation
  • Bell, T. L., and P. K. Kundu, 2000: Dependence of satellite sampling error on monthly averaged rain rates: Comparison of simple models and recent studies. J. Climate, 13 , 449–462.

    • Search Google Scholar
    • Export Citation
  • Bell, T. L., A. Abdullah, R. L. Martin, and G. R. North, 1990: Sampling errors for satellite-derived tropical rainfall—Monte Carlo study using a space-time stochastic model. J. Geophys. Res., 95D , 2195–2205.

    • Search Google Scholar
    • Export Citation
  • Bell, T. L., P. K. Kundu, and C. D. Kummerow, 2001: Sampling errors of SMM/I and TRMM rainfall averages: Comparison with error estimates from surface data and a simple model. J. Appl. Meteor., 40 , 938–954.

    • Search Google Scholar
    • Export Citation
  • Berg, W., and S. K. Avery, 1995: Evaluation of monthly rainfall estimates derived from the Special Sensor Microwave/Imager (SSM/I) over the tropical Pacific. J. Geophys. Res., 100D , 1295–1315.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59 , 2033–2056.

    • Search Google Scholar
    • Export Citation
  • Chang, A. T. C., and L. S. Chiu, 2001: Non-systematic errors of monthly oceanic rainfall derived from passive microwave radiometry. Geophys. Res. Lett., 28 , 1223–1226.

    • Search Google Scholar
    • Export Citation
  • Chang, A. T. C., L. S. Chiu, and T. T. Wilheit, 1993: Random errors of oceanic monthly rainfall derived from SSM/I using probability distribution functions. Mon. Wea. Rev., 121 , 2351–2354.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. G. Schlax, 1991: Estimation of time averages from irregularly spaced observations—With application to coastal zone color scanner estimates of chlorophyll concentration. J. Geophys. Res., 96C , 14669–14692.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R., and Coauthors. 2002: NOAA satellite-derived hydrological products prove their worth. EOS, Trans. Amer. Geophys. Union, 83 , 429–437.

    • Search Google Scholar
    • Export Citation
  • Ha, E., and G. R. North, 1995: Model studies of beam-filling error for rain-rate retrieval with microwave radiometers. J. Atmos. Oceanic Technol., 12 , 268–281.

    • Search Google Scholar
    • Export Citation
  • Hudlow, M. D., and V. L. Patterson, 1979: GATE Radar Rainfall Atlas. NOAA Special Report, Environmental Data and Information Service, National Oceanic and Atmospheric Administration, Washington, DC, 35 pp.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., 1997: Estimates of root-mean-square random error for finite samples of estimated precipitation. J. Appl. Meteor., 36 , 1191–1202.

    • Search Google Scholar
    • Export Citation
  • Kedem, B., L. S. Chiu, and G. R. North, 1990: Estimation of mean rain rate: Application to satellite observations. J. Geophys. Res., 95D , 1965–1972.

    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., M. D. Goldberg, R. M. Zehr, M. DeMaria, J. F. W. Purdom, C. S. Velden, N. C. Grody, and S. J. Kusselson, 2000: Satellite analysis of tropical cyclones using the Advanced Microwave Sounding Unit (AMSU). Bull. Amer. Meteor. Soc., 81 , 1241–1259.

    • Search Google Scholar
    • Export Citation
  • Kuettner, J. P., D. E. Parker, D. R. Rodenhuis, H. Hoeber, H. Kraus, and G. Philander, 1974: GATE final international scientific plans. Bull. Amer. Meteor. Soc., 55 , 711–744.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809–817.

    • Search Google Scholar
    • Export Citation
  • Laughlin, C. R., 1981: On the effect of temporal sampling on the observation of mean rainfall. Precipitation Measurements from Space, Workshop Report, NASA Goddard Space Flight Center, D5–D66. [Available from Goddard Space Flight Center, Greenbelt, MD 20771.].

    • Search Google Scholar
    • Export Citation
  • Li, Q., R. L. Bras, and D. Veneziano, 1996: Analysis of Darwin rainfall data: Implications on sampling strategy. J. Appl. Meteor., 35 , 372–385.

    • Search Google Scholar
    • Export Citation
  • McConnell, A., and G. R. North, 1987: Sampling errors in satellite estimates of tropical rain. J. Geophys. Res., 92D , 9567–9570.

  • Nakamoto, S., J. B. Valdés, and G. R. North, 1990: Frequency–wavenumber spectrum for GATE phase I rainfields. J. Appl. Meteor., 29 , 842–850.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., T. L. Bell, and L. Xu, 2002: Sampling of the diurnal cycle of precipitation using TRMM. J. Atmos. Oceanic Technol., 19 , 1333–1344.

    • Search Google Scholar
    • Export Citation
  • North, G. R., and S. Nakamoto, 1989: Formalism for comparing rain estimation designs. J. Atmos. Oceanic Technol., 6 , 985–992.

  • North, G. R., S. S. P. Shen, and R. Upson, 1993: Sampling errors in rainfall estimates by multiple satellites. J. Appl. Meteor., 32 , 399–410.

    • Search Google Scholar
    • Export Citation
  • Oki, R., and A. Sumi, 1994: Sampling simulation of TRMM rainfall estimation using radar-AMeDAS composites. J. Appl. Meteor., 33 , 1597–1608.

    • Search Google Scholar
    • Export Citation
  • Ricciardulli, L., and P. D. Sardeshmukh, 2002: Local time- and space scales of organized tropical deep convection. J. Climate, 15 , 2775–2790.

    • Search Google Scholar
    • Export Citation
  • Rodriguez-Iturbe, I., M. Marani, P. D'Odorico, and A. Rinaldo, 1998: On space-time scaling of cumulated rainfall fields. Water Resour. Res., 34 , 3461–3469.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., E. R. Williams, and T. D. Keenan, 1992: The Down Under Doppler and Electricity Experiment (DUNDEE): Overview and preliminary results. Bull. Amer. Meteor. Soc., 73 , 3–16.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1982a: Sampling theory for asynoptic satellite observations. Part I: Space–time spectra, resolution, and aliasing. J. Atmos. Sci., 39 , 2577–2600.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1982b: Sampling theory for asynoptic satellite observations. Part II: Fast Fourier synoptic mapping. J. Atmos. Sci., 39 , 2601–2614.

    • Search Google Scholar
    • Export Citation
  • Seed, A., and G. L. Austin, 1990: Variability of summer Florida rainfall and its significance for the estimation of rainfall by gages, radar, and satellite. J. Geophys. Res., 95D , 2207–2215.

    • Search Google Scholar
    • Export Citation
  • Shin, K-S., and G. R. North, 1988: Sampling error study for rainfall estimate by satellite using a stochastic model. J. Appl. Meteor., 27 , 1218–1231.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., R. F. Adler, and G. R. North, 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69 , 278–295.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., C. Kummerow, W. K. Tao, and R. F. Adler, 1996: On the Tropical Rainfall Measuring Mission (TRMM). Meteor. Atmos. Phys., 60 , 19–36.

    • Search Google Scholar
    • Export Citation
  • Soman, V. V., J. B. Valdés, and G. R. North, 1995: Satellite sampling and the diurnal cycle statistics of Darwin rainfall data. J. Appl. Meteor., 34 , 2481–2490.

    • Search Google Scholar
    • Export Citation
  • Soman, V. V., J. B. Valdés, and G. R. North, 1996: Estimation of sampling errors and scale parameters using two- and three-dimensional rainfall data analyses. J. Geophys. Res., 101D , 26453–26460.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., 1996: Uncertainty of estimates of monthly areal rainfall for temporally sparse remote observations. Water Resour. Res., 32 , 373–388.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., and R. A. Houze Jr., 1998: Sensitivity of monthly three-dimensional radar-echo characteristics to sampling frequency. J. Meteor. Soc. Japan, 76 , 73–95.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34 , 1978–2007.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., J. A. Smith, S. J. Burges, C. V. Alonso, and R. W. Darden, 1999: Effect of bias adjustment and rain gauge data quality control on radar rainfall estimation. Water Resour. Res., 35 , 2487–2503.

    • Search Google Scholar
    • Export Citation
  • Weng, F., R. R. Ferraro, and N. C. Grody, 1994: Global precipitation estimations using Defense Meteorological Satellite program F10 and F11 special sensor microwave imager data. J. Geophys. Res., 99D , 14493–14502.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., 1988: Error analysis for the Tropical Rainfall Measuring Mission (TRMM). Tropical Rainfall Measurements, J. S. Theon and N. Fugono, Eds., A. Deepak, 377–385.

    • Search Google Scholar
    • Export Citation
  • Wu, D. L., P. B. Hays, and W. R. Skinner, 1995: A least squares method for spectral analysis of space–time series. J. Atmos. Sci., 52 , 3501–3511.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1989: Sampling characteristics of satellite orbits. J. Atmos. Oceanic Technol., 6 , 891–907.

  • Zeng, L., and G. Levy, 1995: Space and time aliasing structure in monthly mean polar-orbiting satellite data. J. Geophys. Res., 100D , 5133–5142.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 477 108 5
PDF Downloads 214 62 7