Usefulness of Single Column Model Diagnosis through Short-Term Predictions

John W. Bergman NOAA–CIRES Climate Diagnostics Center, Boulder, Colorado

Search for other papers by John W. Bergman in
Current site
Google Scholar
PubMed
Close
and
Prashant D. Sardeshmukh NOAA–CIRES Climate Diagnostics Center, Boulder, Colorado

Search for other papers by Prashant D. Sardeshmukh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Single column models (SCMs) provide an economical framework for developing and diagnosing representations of diabatic processes in weather and climate models. Their economy is achieved at the price of ignoring interactions with the circulation dynamics and with neighboring columns. It has recently been emphasized that this decoupling can lead to spurious error growth in SCM integrations that can totally obscure the error growth due to errors in the column physics that one hopes to isolate through such integrations. This paper suggests one way around this “existential crisis” of single column modeling. The basic idea is to focus on short-term SCM forecast errors, at ranges of 6 h or less, before a grossly unrealistic model state develops and before complex diabatic interactions render a clear diagnosis impossible.

To illustrate, a short-term forecast error diagnosis of the NCAR SCM is presented for tropical conditions observed during the Tropical Ocean and Global Atmosphere (TOGA) Coupled Ocean–Atmosphere Response Experiment (COARE). The 21-day observing period is divided into 84 6-h segments for this purpose. The SCM error evolution is shown to be nearly linear over these 6-h segments and, indeed, apart from a vertical mean bias, to be mainly an extrapolation of initial tendencies. The latter are then decomposed into contributions by various components of the column physics, and additional 6-h integrations are performed with each component separately and in combination with others to assess its contribution to the 6-h errors. Initial tendency and 6-h error diagnostics thus complement each other in diagnosing column physics errors by this approach.

Although the SCM evolution from one time step to the next is nearly linear, the finite-amplitude adjustments made multiple times within each time step to the temperature and humidity to remove supersaturation and convective instabilities make it necessary to consider nonlinear interactions between the column physics components. One such particularly strong interaction is identified between vertical diffusion and deep convection. The former, though nominally small, is shown to have a profound impact on both the amplitude and timing of the latter, and thence on the small imbalance between the total diabatic heating and adiabatic cooling of ascent in the column. The SCM diagnosis thus suggests that misrepresentation of this interaction, in addition to that of the interacting components themselves, might be a major contributor to the NCAR GCM's tropical simulation errors.

Corresponding author address: John Bergman, Mail Code: R/CDC1, 325 Broadway, Boulder CO 80305-3328. Email: bergmanj@colorado.edu

Abstract

Single column models (SCMs) provide an economical framework for developing and diagnosing representations of diabatic processes in weather and climate models. Their economy is achieved at the price of ignoring interactions with the circulation dynamics and with neighboring columns. It has recently been emphasized that this decoupling can lead to spurious error growth in SCM integrations that can totally obscure the error growth due to errors in the column physics that one hopes to isolate through such integrations. This paper suggests one way around this “existential crisis” of single column modeling. The basic idea is to focus on short-term SCM forecast errors, at ranges of 6 h or less, before a grossly unrealistic model state develops and before complex diabatic interactions render a clear diagnosis impossible.

To illustrate, a short-term forecast error diagnosis of the NCAR SCM is presented for tropical conditions observed during the Tropical Ocean and Global Atmosphere (TOGA) Coupled Ocean–Atmosphere Response Experiment (COARE). The 21-day observing period is divided into 84 6-h segments for this purpose. The SCM error evolution is shown to be nearly linear over these 6-h segments and, indeed, apart from a vertical mean bias, to be mainly an extrapolation of initial tendencies. The latter are then decomposed into contributions by various components of the column physics, and additional 6-h integrations are performed with each component separately and in combination with others to assess its contribution to the 6-h errors. Initial tendency and 6-h error diagnostics thus complement each other in diagnosing column physics errors by this approach.

Although the SCM evolution from one time step to the next is nearly linear, the finite-amplitude adjustments made multiple times within each time step to the temperature and humidity to remove supersaturation and convective instabilities make it necessary to consider nonlinear interactions between the column physics components. One such particularly strong interaction is identified between vertical diffusion and deep convection. The former, though nominally small, is shown to have a profound impact on both the amplitude and timing of the latter, and thence on the small imbalance between the total diabatic heating and adiabatic cooling of ascent in the column. The SCM diagnosis thus suggests that misrepresentation of this interaction, in addition to that of the interacting components themselves, might be a major contributor to the NCAR GCM's tropical simulation errors.

Corresponding author address: John Bergman, Mail Code: R/CDC1, 325 Broadway, Boulder CO 80305-3328. Email: bergmanj@colorado.edu

Save
  • Bergman, J. W., and P. D. Sardeshmukh, 2004: Dynamic stabilization of atmospheric single-column models. J. Climate, in press.

  • Emanuel, K. A., and M. Živkovíc-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56 , 17661782.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., L. R. Leung, and J. McCaa, 1999: A comparison of three different modeling strategies for evaluating cloud and radiation parameterizations. Mon. Wea. Rev., 127 , 19671984.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., and Coauthors. 2000: A comparison of single column model simulations of summertime midlatitude continental convection. J. Geophys. Res., 105 , 20912124.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., 1994: Parameterization of moist convection in the National Center for Atmospheric Research Community Climate Model (CCM2). J. Geophys. Res., 99 , 55515568.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., and J. A. Pedretti, 2000: Assessment of solution uncertainties in single-column modeling frameworks. J. Climate, 13 , 352365.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, 1996: Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Note NCAR/TN-420+STR, 152 pp.

    • Search Google Scholar
    • Export Citation
  • Klinker, E., and P. D. Sardeshmukh, 1992: The diagnosis of mechanical dissipation in the atmosphere from large-scale balance requirements. J. Atmos. Sci., 49 , 608627.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., N. McFarlane, L. Levkov, K. Abdella, and F. Albers, 1999: Comparing different cloud schemes of a single column model by using mesoscale forcing and nudging technique. J. Climate, 12 , 438461.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., 1982: Interaction of a cumulus cloud ensemble with the large-scale environment. Part III: Semi-prognostic test of the Arakawa–Shubert cumulus parameterization. J. Atmos. Sci., 39 , 88103.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze, 1992: An integrated view of the 1987 Australian monsoon and its mesoscale convective systems. Part I: Horizontal structure. Quart. J. Roy. Meteor. Soc., 118 , 927963.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and W. M. Frank, 1999: Relationship between stability and monsoon convection. J. Atmos. Sci., 56 , 2436.

  • Moncrieff, M. W., S. K. Krueger, D. Gregory, J-L. Redelsperger, and W-K. Tao, 1997: GEWEX Cloud System Study (GCSS) working group 4: Precipitating convective cloud systems. Bull. Amer. Meteor. Soc., 78 , 831845.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and D. G. Cripe, 1999: Alternative methods for specification of observed forcing in single-column models and cloud system models. J. Geophys. Res., 104 , 2452724545.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., K-M. Xu, R. J. Somerville, and S. Iacobellis, 1996: Single-column models and cloud ensemble models as links between observations and climate models. J. Climate, 9 , 16831697.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors. 2003: Confronting models with data: The GEWEX cloud systems study. Bull. Amer. Meteor. Soc., 84 , 455469.

    • Search Google Scholar
    • Export Citation
  • Ricciardulli, L., and R. R. Garcia, 2000: The excitation of equatorial waves by deep convection in the NCAR Community Climate Model (CCM3). J. Atmos. Sci., 57 , 34613487.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 2000: Modeling tropical precipitation in a single column. J. Climate, 13 , 43784392.

  • Stokes, G. M., and S. E. Schwartz, 1994: The Atmospheric Radiation Measurement (ARM) program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75 , 12021221.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. M., S. W. Payne, E. E. Reckner, and R. J. Reed, 1979: Structure and properties of synoptic-scale wave disturbances in the intertropical convergence zone of the eastern Atlantic. J. Atmos. Sci., 36 , 5372.

    • Search Google Scholar
    • Export Citation
  • Xie, S., and Coauthors. 2002: Intercomparison and evaluation of cumulus parameterizations under summertime midlatitude continental conditions. Quart. J. Roy. Meteor. Soc., 128 , 10951135.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Centre General Circulation Model. Atmos.–Ocean, 33 , 407446.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., and J. L. Lin, 1997: Constrained variational analysis of sounding data based on column-integrated conservations of mass, heat, moisture, and momentum: Approach and application to ARM measurements. J. Atmos. Sci., 54 , 15031524.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 252 40 6
PDF Downloads 16 9 0