• Arakawa, A., , and W. H. Schubert, 1974: Interaction of cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31 , 671701.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., , and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55 , 477493.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , and M. J. Miller, 1993: The Betts–Miller scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 107–122.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97 , 163172.

  • Carton, J. A., , and Z. Zhou, 1997: Annual cycle of sea surface temperature in the tropical Atlantic Ocean. J. Geophys. Res., 102 , 2781327824.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., , X. Cao, , B. S. Giese, , and A. M. da Silva, 1996: Decadal and interannual SST variability in the tropical Atlantic. J. Phys. Oceanogr., 26 , 11651175.

    • Search Google Scholar
    • Export Citation
  • Chang, P., , R. Saravanan, , L. Ji, , and G. C. Hegerl, 2000: The effect of local sea surface temperatures on atmospheric circulation over the tropical Atlantic sector. J. Climate, 13 , 21952216.

    • Search Google Scholar
    • Export Citation
  • Chung, C., , and S. Nigam, 1999: Weighting of geophysical data in principal component analysis. J. Geophys. Res., 104 , 1692516928.

  • Da Silva, A. M., , A. C. Young, , and S. Levitus, 1994: Algorithms and Procedures. Vol.1, Atlas of Surface Marine Data 1994,. National Oceanic and Atmospheric Administration, 83 pp.

    • Search Google Scholar
    • Export Citation
  • Deser, C., 1993: Diagnosis of the surface momentum balance over the tropical Pacific Ocean. J. Climate, 6 , 6474.

  • Ebisuzaki, W., , and H. M. Van den Dool, 1993: The Atmospheric Model Intercomparison Project at the National Meteorological Center. NMC Office Note 402, 19 pp.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 1993: The description of the ECMWF/WCRP Level III—A global atmospheric data archive. European Centre for Medium-Range Weather Forecasts, Tech. Attachment, Reading, United Kingdom, 72 pp.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., , and D. A. Mayer, 1997: Tropical Atlantic SST variability and its relation to El Niño–South Oscillation. J. Geophys. Res., 102 , 929945.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73 , 19621970.

  • Gates, W. L., and Coauthors. 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80 , 2956.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., , and B. Weare, 1997: Uncertainties in global ocean surface heat flux climatologies derived from ship observations. J. Climate, 10 , 27632781.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., , and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability dependent closure. Mon. Wea. Rev., 118 , 14831506.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Y., , R. S. Bradley, , and B. Sun, 2000: The relationship of cloud cover to near-surface temperature and humidity: Comparison of GCM simulations with empirical data. J. Climate, 13 , 18581878.

    • Search Google Scholar
    • Export Citation
  • Grumbine, R. W., 1996: Automated passive microwave sea ice concentration analysis at NCEP. NOAA Tech. Note 120, 13 pp.

  • Hack, J. J., 1994: Parameterization of moist convection in the National Center for Atmospheric Research Community Climate Model (CCM2). J. Geophys. Res., 99 , 55515568.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 1991: Climate Dynamics of the Tropics. Kluwer Academic, 488 pp.

  • IMSL, 1989: International Mathematical and Statistical Library Version 1.1. IMSL Publications.

  • Kiehl, J. T., , J. J. Hack, , G. B. Bonan, , B. A. Boville, , D. L. Williamson, , and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311150.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., , and D. G. DeWitt, 1997: Comparison of atmospheric model wind stress with three different convective parameterizations: Sensitivity of tropical Pacific Ocean simulations. Mon. Wea. Rev., 125 , 12311250.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., , G. Wang, , and S. Jewson, 2001: Surface flux response to interannual tropical Pacific sea surface temperature variability in AMIP models. Climate Dyn., 17 , 627641.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31 , 12321240.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., , J. H. Kim, , and Y. Sud, 1996: Intercomparison of hydrologic processes in AMIP GCMs. Bull. Amer. Meteor. Soc., 77 , 22092227.

    • Search Google Scholar
    • Export Citation
  • Li, T., , and B. Wang, 1994: A thermodynamic equilibrium climate model for monthly mean surface winds and precipitation over the tropical Pacific. J. Atmos. Sci., 51 , 13721385.

    • Search Google Scholar
    • Export Citation
  • Lin, J. W. B., , and J. D. Neelin, 2000: Influence of a stochastic moist convective parameterization on tropical climate variability. Geophys. Res. Lett., 27 , 36913694.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , and D. L. Hartmann, 2001: The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parameterization. J. Climate, 14 , 20152034.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., , and H-S. Shen, 1993: Structure of oceanic and atmospheric low-frequency variability over the tropical Pacific and Indian Oceans. Part I: COADS observations. J. Climate, 7 , 17501771.

    • Search Google Scholar
    • Export Citation
  • Nomura, A., 1995: Global sea-ice concentration data set for use in the ECMWF re-analysis system. ECMWF Tech. Rep. 76, 40 pp.

  • Numerical Prediction Division, 1997: Outline of the Operational Numerical Weather Prediction at the Japan Meteorological Agency. Japan Meteorological Society, Tokyo, Japan, 126 pp.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1990: El Niño, La Niño, and the Southern Oscillation. Academic Press, 293 pp.

  • Philander, S. G. H., , and R. C. Pacanowski, 1986: A model of the seasonal cycle in the tropical Atlantic Ocean. J. Geophys. Res., 91 , 1419214206.

    • Search Google Scholar
    • Export Citation
  • Phillips, T. J., 1996: Documentation of the AMIP models on the World Wide Web. Bull. Amer. Meteor. Soc., 77 , 11911196.

  • Pope, V. D., , M. L. Gallani, , P. R. Rowntree, , and R. A. Stratton, 2000: The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Climate Dyn., 16 , 123146.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , and T. M. Smith., 1994: Improved global sea surface temperature analysis using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Robock, A., , C. A. Schlosser, , K. Ya Vinnokov, , N. A. Speranskaya, , J. K. Entin, , and S. Qiu, 1998: Evaluation of AMIP soil moisture simulations. Global Planet. Change, 19 , 181208.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Barradas, A., , J. A. Carton, , and S. Nigam, 2000: Structure of interannual-to-decadal climate variability in the tropical Atlantic sector. J. Climate, 13 , 32853297.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., , and B. N. Goswami, 1997: Intercomparison of the seasonal cycle of tropical surface stress in 17 AMIP atmospheric general circulation models. Climate Dyn., 13 , 561585.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., , and T. Palmer, 1996: Interannual tropical rainfall variability in general circulation model simulations associated with the Atmospheric Model Intercomparison Project. J. Climate, 9 , 27272750.

    • Search Google Scholar
    • Export Citation
  • Srinivasan, G., , M. Hulme, , and C. G. Jones, 1995: An evaluation of the spatial and interannual variability of the tropical precipitation as simulated by GCMs. Geophys. Res. Lett., 22 , 16971700.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., , and L. L. Takacs, 1995: Documentation of the ARIES/GOES Dynamic Core: Version 2. NASA Tech. Memo. 104606, Vol. 5, 45 pp. [Available from NASA Center for Aerospace Information, 800 Elkridge Landing Rd., Linthicum Heights, MD 21090-2934.].

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., , S. P. Jewson, , and D. P. Rodwell, 2000: The elements of climate variability in the tropical Atlantic region. J. Climate, 13 , 32613284.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. K., Ed,. 2000: Intercomparison and validation of ocean–atmosphere energy flux fields. Joint WCRP/SCOR Working Group on Air–Sea Fluxes Final Rep. WCRP-112, WMO/TD-No. 1036, 306 pp.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., , W. A. Heckley, , and J. Slingo, 1988: Tropical forecasting at ECMWF—The influence of physical parameterization on the mean structure of forecasts and analyses. Quart. J. Roy. Meteor. Soc., 114 , 639664.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., , and I. Mokhov, 1995: Evaluation of total cloudiness and its variability in the Atmospheric Model Intercomparison Project. J. Climate, 8 , 22242238.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., AMIP Modeling Groups,. . 1996: Evaluation of the vertical structure of zonally averaged cloudiness and its variability in the Atmospheric Model Intercomparison Project. J. Climate, 9 , 34193431.

    • Search Google Scholar
    • Export Citation
  • Wolter, K., 1997: Trimming problems and remedies in COADS. J. Climate, 10 , 19801997.

  • Wu, X. Q., , and M. W. Moncrieff, 2001: Sensitivity of single column model solutions to convective parameterizations and initial conditions. J. Climate, 14 , 25632582.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimations, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., 1993: Air–sea interaction in the equatorial Atlantic region. J. Climate, 6 , 15671586.

  • Zhang, G. J., 1995: The sensitivity of surface-energy balance to convective parameterization in a general circulation model. J. Atmos. Sci., 52 , 13701382.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and N. A. McFarlane, 1995: Sensitivity of climate simulation to the parameterization of cumulus convection in the Canadian Climate Centre General Circulation Model. Atmos.–Ocean, 33 , 407446.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 126 126 3
PDF Downloads 9 9 6

Modeling Climate Variability in the Tropical Atlantic Atmosphere

View More View Less
  • 1 Department of Meteorology, University of Maryland, College Park, College Park, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Climate variability in the tropical Atlantic sector as represented in six atmospheric general circulation models is examined. On the annual mean, most simulations overestimate wind stress away from the equator although much of the variability can be accounted for by differences in drag formulations. Most models produce excessive latent heat flux as a consequence of errors in boundary layer humidity. Systematic errors are also evident in precipitation and surface wind divergence fields. The seasonal cycle of the zonal trade winds is stronger than observed in most simulations, while the meridional component is well represented.

Next interannual variability is considered, focusing on two tropical patterns (Atlantic Niño and interhemispheric modes). The directions of the surface wind anomalies in the models are found to be generally similar to observations, although the magnitude of the wind stress response varies greatly among models. However, all models fail to reproduce the wind–latent heat feedback believed to be essential to interannual variability in this basin.

Corresponding author address: Dr. James A. Carton, Department of Meteorology, University of Maryland, College Park, 3433 Computer and Space Science Bldg., College Park, MD 20742-2425. Email: carton@atmos.umd.edu

Abstract

Climate variability in the tropical Atlantic sector as represented in six atmospheric general circulation models is examined. On the annual mean, most simulations overestimate wind stress away from the equator although much of the variability can be accounted for by differences in drag formulations. Most models produce excessive latent heat flux as a consequence of errors in boundary layer humidity. Systematic errors are also evident in precipitation and surface wind divergence fields. The seasonal cycle of the zonal trade winds is stronger than observed in most simulations, while the meridional component is well represented.

Next interannual variability is considered, focusing on two tropical patterns (Atlantic Niño and interhemispheric modes). The directions of the surface wind anomalies in the models are found to be generally similar to observations, although the magnitude of the wind stress response varies greatly among models. However, all models fail to reproduce the wind–latent heat feedback believed to be essential to interannual variability in this basin.

Corresponding author address: Dr. James A. Carton, Department of Meteorology, University of Maryland, College Park, 3433 Computer and Space Science Bldg., College Park, MD 20742-2425. Email: carton@atmos.umd.edu

Save