• Alexander, M. A., 1992: Midlatitude atmosphere–ocean interaction during El Niño. Part I: The North Pacific Ocean. J. Climate, 5 , 944958.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., , and M. Latif, 1999: Reply. J. Climate, 12 , 1873.

  • Barnett, T. P., , and M. Latif, 2000: Corrigendum. J. Climate, 13 , 511.

  • Barnett, T. P., , D. W. Pierce, , R. Saravanan, , N. Schneider, , D. Dommenget, , and M. Latif, 1999: Origins of the midlatitude Pacific decadal variability. Geophys. Res. Lett., 26 , 14531456.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., , and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Res., 55 , 477493.

    • Search Google Scholar
    • Export Citation
  • Bladé, I., 1997: The influence of midlatitude ocean–atmosphere coupling on the low-frequency variability of a GCM. Part I: No tropical SST forcing. J. Climate, 10 , 20872106.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., , and S. Raynaud, 1997: Kinematics of the Pacific Equatorial Undercurrent: An Eulerian and Lagrangian approach from GCM results. J. Phys. Oceanogr., 27 , 10381053.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , C. Smith, , and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5 , 541560.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1991: Poleward heat transport in the ocean. Tellus, 43 , 104115.

  • da Silva, A. M., , C. C. Young, , and S. Levitus, 1994a: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 6, 83 pp.

    • Search Google Scholar
    • Export Citation
  • da Silva, A. M., , C. C. Young, , and S. Levitus, 1994b: Anomalies of Heat and Momentum Fluxes. Vol. 3, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 8, 413 pp.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6 , 249266.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , and M. L. Blackmon, 1995: On the relationship between tropical and North Pacific sea surface temperature variations. J. Climate, 8 , 16771680.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , and M. S. Timlin, 1997: Atmosphere–ocean interaction on weekly timescales in the North Atlantic and Pacific. J. Climate, 10 , 393408.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , M. A. Alexander, , and M. S. Timlin, 1996: Upper-ocean thermal variations in the North Pacific during 1970–1991. J. Climate, 9 , 18401855.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , M. A. Alexander, , and M. S. Timlin, 1999: Evidence for a wind-driven intensification of the Kuroshio Current Extension from the 1970s to the 1980s. J. Climate, 12 , 16971706.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves and air–sea feedback in the middle latitudes. Rev. Geophys., 23 , 357390.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1999: A cautionary note on the use of statistical atmospheric models in the middle latitudes: Comments on “Decadal variability in the North Pacific as simulated by a hybrid coupled model.”. J. Climate, 12 , 18711872.

    • Search Google Scholar
    • Export Citation
  • Gu, D., , and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the Tropics and the Extratropics. Science, 275 , 805807.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., 1989: On climatological monthly mean wind stress and wind stress curl fields over the world ocean. J. Climate, 2 , 5770.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models. 1. Theory. Tellus, 28 , 473485.

  • Hellerman, S., , and M. Rosenstein, 1983: Normal monthly wind stress over the world ocean with error estimates. J. Phys. Oceanogr., 13 , 10931104.

    • Search Google Scholar
    • Export Citation
  • Ji, M., , A. Leetmaa, , and V. E. Kousky, 1996: Coupled model predictions of ENSO during the 1980s and the 1990s at the National Centers for Environmental Prediction. J. Climate, 9 , 31053120.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., , and S. B. Power, 1995: A simple atmospheric model of surface heat flux for use in ocean modeling studies. J. Phys. Oceanogr., 25 , 92105.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., , and S. B. Power, 1999: Modulation of ENSO variability on decadal and longer timescales. El Niño and the Southern Oscillation, Multiscale Variability and Its Impacts on Ecosystems and Society, H. F. Diaz and V. Markgraf, Eds., Cambridge University Press, 413–442.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., , J. P. McCreary, , and B. A. Klinger, 1999: A mechanism for the decadal variation of ENSO. Geophys. Res. Lett., 26 , 17431747.

    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., , J. P. McCreary, , and R. Kleeman, 2002: The relationship between oscillating subtropical wind stress and equatorial temperature. J. Phys. Oceanogr., 32 , 15071521.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , and S. Manabe, 1998: Model assessment of decadal variability and trends in the tropical Pacific Ocean. J. Climate, 11 , 22732296.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., , and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline. II. The general theory and its consequences. Tellus, 19 , 98106.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11 , 324336.

  • Large, W. G., , and S. Pond, 1982: Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr., 12 , 464482.

  • Latif, M., , and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266 , 634637.

    • Search Google Scholar
    • Export Citation
  • Latif, M., , and T. P. Barnett, 1996: Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J. Climate, 9 , 24072423.

    • Search Google Scholar
    • Export Citation
  • Latif, M., , R. Kleeman, , and C. Eckert, 1997: Greenhouse warming, decadal variability, or El Niño? An attempt to understand the anomalous 1990s. J. Climate, 10 , 22212239.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., , and M. J. Nath, 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9 , 20362057.

    • Search Google Scholar
    • Export Citation
  • Liu, Z. Y., , S. G. H. Philander, , and P. C. Pacanowski, 1994: A GCM study of tropical–subtropical upper-ocean water exchange. J. Phys. Oceanogr., 24 , 26062623.

    • Search Google Scholar
    • Export Citation
  • Lu, P., , J. P. McCreary, , and B. A. Klinger, 1998: Meridional circulation cells and the source waters of the Pacific equatorial undercurrent. J. Phys. Oceanogr., 28 , 6284.

    • Search Google Scholar
    • Export Citation
  • Lysne, J., , P. Chang, , and B. Giese, 1997: Impact of the extratropical Pacific on equatorial variability. Geophys. Res. Lett., 24 , 25892592.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., , and P. K. Kundu, 1988: A numerical investigation of the Somali Current during the Southwest Monsoon. J. Mar. Res., 46 , 2558.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., , and P. Lu, 1994: On the interaction between the subtropical and the equatorial oceans: The subtropical cell. J. Phys. Oceanogr., 24 , 466497.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M., , and D. Zhang, 2002: Slowdown of the meridional overturning circulation in the upper North Pacific. Nature, 415 , 603608.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., , and N. Schneider, 2000: Interdecadal climate regime dynamics in the North Pacific Ocean: Theories, observations and ecosystem impacts. Progress in Oceanography, Vol. 47, Pergamon, 355–379.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., 1999: Wind-induced variability of ocean gyres. Dyn. Atmos. Oceans, 29 , 335364.

  • Muennich, M., , M. Latif, , S. Venzke, , and E. Maier-Reimer, 1998: Decadal oscillations in a simple coupled model. J. Climate, 11 , 33093319.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., , and T. Yamagata, 1999: Recent decadal SST variability in the northwestern Pacific associated atmospheric anomalies. Beyond El Niño: Decadal and Interdecadal Climate Variability, A. Navarra, Ed., Springer-Verlag, 49–72.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., , and T. Izumi, 2002: Interannual and decadal modulations recently observed in the Pacific storm track activity and East Asian winter monsoon. J. Climate, 15 , 18551874.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., , G. Lin, , and T. Yamagata, 1997: Decadal climate variability in the North Pacific during the recent decades. Bull. Amer. Meteor. Soc., 78 , 22152225.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , and W. Weng, 1999: Analytical prototypes for ocean–atmosphere interaction at midlatitudes. Part I: Coupled feedbacks as a sea surface temperature dependent stochastic process. J. Climate, 12 , 697721.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., , and S. Yamada, 1989: Recent warming of recent sea surface temperature and its relation to Northern Hemisphere circulation. J. Meteor. Soc. Japan, 67 , 375382.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., , and S-P. Xie, 2003: Covariations of sea surface temperature and wind over the Kuroshio and its extension: Evidence for oceanic–atmospheric feedback. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., , S-P. Xie, , and K. Takeuchi, 2000: Equatorward spreading of a passive tracer with application to North Pacific interdecadal temperature variations. J. Oceanogr., 56 , 173183.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., , S-P. Xie, , and J. McCreary, 2002: Decadal variations in the subtropical cells and equatorial Pacific SST. Geophys. Res. Lett., 29 .doi: 10.1029/2001GL013717.

    • Search Google Scholar
    • Export Citation
  • Parker, D. E., , C. K. Folland, , A. Bevan, , M. N. Ward, , M. Jackson, , and K. Maskell, 1994: Marine surface data for analysis of climatic fluctuations on interannual to century time scales. Natural Climate Variability on Decade-To-Century Time Scales, D. G. Martinson et al., Eds., National Academy Press, 241–251.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., , T. P. Barnett, , and M. Latif, 2000a: Connections between the Pacific Ocean Tropics and midlatitudes on decadal timescales. J. Climate, 13 , 11731194.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., , T. P. Barnett, , N. Schneider, , R. Saravanan, , D. Dommenget, , and M. Latif, 2000b: The role of ocean dynamics in producing decadal climate variability in the North Pacific. Climate Dyn., 18 , 5170.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Rothstein, L. M., , R-H. Zhang, , A. J. Busalacchi, , and D. Chen, 1998: A numerical simulation of the mean water pathways in the subtropical and tropical Pacific Ocean. J. Phys. Oceanogr., 28 , 322344.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., , and J. C. McWilliams, 1997: Stochasticity and spatial resonance in interdecadal climate fluctuations. J. Climate, 10 , 22992320.

    • Search Google Scholar
    • Export Citation
  • Schneider, N. S., , and A. J. Miller, 2001: Predicting western North Pacific Ocean climate. J. Climate, 14 , 39974002.

  • Schneider, N. S., , A. J. Miller, , M. A. Alexander, , and C. Deser, 1999: Subduction of decadal North Pacific temperature anomalies: Observations and dynamics. J. Phys. Oceanogr., 29 , 10561070.

    • Search Google Scholar
    • Export Citation
  • Schneider, N. S., , A. J. Miller, , and D. W. Pierce, 2002: Anatomy of North Pacific decadal variability. J. Climate, 15 , 586605.

  • Thompson, C. J., , and D. S. Battisti, 2000: A linear stochastic dynamical model of ENSO. Part I: Model development. J. Climate, 13 , 28182832.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., , and F-F. Jin, 2002: A nonlinear mechanism for decadal El Niño amplitude changes. Geophys. Res. Lett., 29 .doi: 10.1029/2001GL013369.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1990: Recent observed interdecadal climate changes in the Northern Hemisphere. Bull. Amer. Meteor. Soc., 71 , 988993.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , C. Smith, , and Q. Jiang, 1990: Spatial patterns of atmosphere–ocean interaction in the northern winter. J. Climate, 3 , 990998.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 1995: Interdecadal changes in El Niño onset in the last four decades. J. Climate, 8 , 267285.

  • Weng, W., , and J. D. Neelin, 1999: Analytical prototypes for ocean–atmosphere interaction at midlatitudes. Part II: Mechanisms for coupled gyre modes. J. Climate, 12 , 27572774.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., , T. Kunitani, , A. Kubokawa, , M. Nonaka, , and S. Hosoda, 2000: Interdecadal thermocline variability in the North Pacific for 1958–97: A GCM simulation. J. Phys. Oceanogr., 30 , 27982813.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., , M. Endoh, , Y. Kitamura, , A. Kitoh, , T. Motoi, , and A. Noda, 2000: ENSO-like interdecadal variability in the Pacific Ocean as simulated in a coupled general circulation model. J. Geophys. Res., 105 , 1394513963.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., , N. Schneider, , D. W. Pierce, , and T. P. Barnett, 2001: Modeling of North Pacific climate variability forced by oceanic heat flux anomalies. J. Climate, 14 , 40274046.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 13 13 3
PDF Downloads 3 3 0

Interannual and Decadal Variability in an Intermediate Coupled Model of the Pacific Region

View More View Less
  • 1 International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii
  • | 2 Courant Institute, New York, New York
  • | 3 Oceanographic Center, Nova Southeastern University, Dania Beach, Florida
© Get Permissions
Restricted access

Abstract

Processes that cause decadal variability in an intermediate coupled ocean–atmosphere model of the Pacific basin, both at northern midlatitudes and in the Tropics, are studied. The model's ocean component is a variable-temperature 3½-layer system. Its atmospheric component consists of two basic parts: an empirical model, constructed from patterns obtained by the singular value decomposition (SVD) statistical technique that determines wind stress anomalies from model sea surface temperature (SST), and a simple representation of the planetary boundary layer to calculate the surface heat flux anomalies. A third part specifies stochastic wind stress forcing from observed variability. In addition, the model is specifically designed to separate tropical and extratropical interactions, such that the Tropics can force the extratropics through the atmosphere but the extratropics can only feed back to the Tropics through the ocean.

Solutions develop two types of oscillations: an ENSO-like interannual mode and a decadal mode. As in many models of ENSO, the interannual mode is driven by positive, ocean–atmosphere feedbacks near the equator, and time-delayed negative feedback is provided by off-equatorial Rossby waves. For parameter choices that amplify midlatitude coupling by 30% (ϕo = 1.3), a self-sustained decadal oscillation develops in the North Pacific without any tropical interactions. Diagnostic analyses show that it is maintained by ocean-to-atmosphere feedbacks in the northwest and subtropical northeast Pacific, and by atmospheric teleconnections from those regions to the northeast ocean. For weaker coupling (ϕo = 1.2), the decadal mode is damped. In this case, the mode can be sustained by atmospheric teleconnections from the Tropics associated with the interannual mode, but not by extratropical stochastic forcing. Although including stochastic forcing does generate variability at decadal timescales, a distinct decadal spectral peak only exists when the decadal mode is active.

Decadal variability is carried to the equator by variations in the transport, rather than temperature, of the North Pacific subtropical cell. These variations modulate near-equatorial SST by altering the amount of cool, thermocline water that upwells in the eastern equatorial Pacific, which in turn feeds back to the interannual mode.

+ Current affiliation: George Mason University, Fairfax, Virginia, and the Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Corresponding author address: Dr. Amy B. Solomon, CIRES/Climate Diagnostics Center, University of Colorado, 216 UCB, Boulder, CO 80309-0216. Email: amy@cdc.noaa.gov

Abstract

Processes that cause decadal variability in an intermediate coupled ocean–atmosphere model of the Pacific basin, both at northern midlatitudes and in the Tropics, are studied. The model's ocean component is a variable-temperature 3½-layer system. Its atmospheric component consists of two basic parts: an empirical model, constructed from patterns obtained by the singular value decomposition (SVD) statistical technique that determines wind stress anomalies from model sea surface temperature (SST), and a simple representation of the planetary boundary layer to calculate the surface heat flux anomalies. A third part specifies stochastic wind stress forcing from observed variability. In addition, the model is specifically designed to separate tropical and extratropical interactions, such that the Tropics can force the extratropics through the atmosphere but the extratropics can only feed back to the Tropics through the ocean.

Solutions develop two types of oscillations: an ENSO-like interannual mode and a decadal mode. As in many models of ENSO, the interannual mode is driven by positive, ocean–atmosphere feedbacks near the equator, and time-delayed negative feedback is provided by off-equatorial Rossby waves. For parameter choices that amplify midlatitude coupling by 30% (ϕo = 1.3), a self-sustained decadal oscillation develops in the North Pacific without any tropical interactions. Diagnostic analyses show that it is maintained by ocean-to-atmosphere feedbacks in the northwest and subtropical northeast Pacific, and by atmospheric teleconnections from those regions to the northeast ocean. For weaker coupling (ϕo = 1.2), the decadal mode is damped. In this case, the mode can be sustained by atmospheric teleconnections from the Tropics associated with the interannual mode, but not by extratropical stochastic forcing. Although including stochastic forcing does generate variability at decadal timescales, a distinct decadal spectral peak only exists when the decadal mode is active.

Decadal variability is carried to the equator by variations in the transport, rather than temperature, of the North Pacific subtropical cell. These variations modulate near-equatorial SST by altering the amount of cool, thermocline water that upwells in the eastern equatorial Pacific, which in turn feeds back to the interannual mode.

+ Current affiliation: George Mason University, Fairfax, Virginia, and the Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Corresponding author address: Dr. Amy B. Solomon, CIRES/Climate Diagnostics Center, University of Colorado, 216 UCB, Boulder, CO 80309-0216. Email: amy@cdc.noaa.gov

Save