• Anderson, T. W., 1984: An Introduction to Multivariate Statistical Analysis. John Wiley and Sons, 550 pp.

  • Barnett, T. P., , and R. Preisendorfer, 1987: Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis. Mon. Wea. Rev., 115 , 18251850.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., 1994: Linear statistical short-term climate predictive skill in the Northern Hemisphere. J. Climate, 7 , 15131564.

  • Bartlett, M. S., 1947: The general canonical correlation distribution. Ann. Math. Stat., 18 , 117.

  • Bretherton, C., , C. Smith, , and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5 , 541560.

    • Search Google Scholar
    • Export Citation
  • Cherry, S., 1996: Singular value decomposition and canonical correlation analysis. J. Climate, 9 , 20332009.

  • Czaja, A., , and C. Frankignoul, 1999: Influence of the North-Atlantic SST on the atmospheric circulation. Geophys. Res. Lett., 26 , 29692972.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., , and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15 , 606623.

    • Search Google Scholar
    • Export Citation
  • Efron, B., , and R. J. Tibshirani, 1993: An Introduction to the Bootstrap. Chapman and Hall, 436 pp.

  • Fedderson, H., , A. Navarra, , and M. N. Ward, 1999: Reduction of model systematic error by statistical correction for dynamical seasonal predictions. J. Climate, 12 , 19741989.

    • Search Google Scholar
    • Export Citation
  • Friederichs, P., 2000: Interannuelle und dekadische Variabilität der atmosphärischen Zirkulation in gekoppelten und SST-geriebenen GCM-Experimenten. Bonner Meteorologische Abhandlungen, Rep. 50, 133 pp.

    • Search Google Scholar
    • Export Citation
  • Glahn, H. R., 1968: Canonical correlation and its relationship to discriminant analysis and multiple regression. J. Atmos. Sci., 25 , 2331.

    • Search Google Scholar
    • Export Citation
  • Glowienka-Hense, R., 1999: Forced and free variability of the semi-annual wave in the ECHAM GCM. Climate Dyn., 15 , 269275.

  • Glynn, W. J., , and R. J. Muirhead, 1978: Inference in canonical correlation analysis. J. Multivar. Anal., 8 , 468478.

  • Hartung, J., , and B. Elpelt, 1995: Multivariate Statistik. R. Oldenbourg Verlag, 815 pp.

  • Heck, D. L., 1960: Charts of some upper percentage points of the distribution of the largest characteristic root. Ann. Math. Stat., 31 , 625642.

    • Search Google Scholar
    • Export Citation
  • Hense, A., , and U. Römer, 1995: Statistical analysis of tropical climate anomaly simulations. Climate Dyn., 11 , 178192.

  • Jenkins, G. M., , and D. G. Watts, 1968: Spectral Analysis and Its Applications. Holden-Day, 525 pp.

  • Johansson, A., , A. Barnston, , S. Saha, , and H. Van den Dool, 1998: On the level and origin of seasonal forecast skill on northern Europe. J. Atmos. Sci., 55 , 103127.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors. 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kres, H., 1975: Statistische Tafeln zur Multivariaten Analyse. Springer, 431 pp.

  • Lau, K-M., , and M. J. Nath, 1994: A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere–ocean system. J. Climate, 7 , 11841207.

    • Search Google Scholar
    • Export Citation
  • Morrison, D. F., 1990: Multivariate Statistical Methods. McGraw-Hill, 495 pp.

  • Newman, M., , and P. D. Sardeshmukh, 1995: A caveat concerning singular value decomposition. J. Climate, 8 , 352399.

  • Peng, P., , A. Kumar, , A. G. Barnston, , and L. Goddard, 2000: Simulation skills of the SST-forced global climate variability of the NCEP–MRF9 and the Scripps–MPI ECHAM3 models. J. Climate, 13 , 36573679.

    • Search Google Scholar
    • Export Citation
  • Röckner, E., and Coauthors. 1992: Simulation of the present-day climate with the ECHAM model: Impact of model physics and resolution. Max-Planck-Institut für Meteorologie Rep. 93, Hamburg, 171 pp.

    • Search Google Scholar
    • Export Citation
  • Roy, S. N., 1953: An heuristic method of test construction and its use in multivariate analysis. Ann. Math. Stat., 24 , 220238.

  • Stein, O., 2000: The variability of Atlantic–European blocking as derived from long SLP time series. Tellus, 52A , 225236.

  • Toth, Z., 1991: Circulation pattern in phase space: A multinormal distribution? Mon. Wea. Rev., 119 , 15011511.

  • von Storch, H., , and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 494 pp.

  • Wallace, J. M., , X. Cheng, , and D. Sun, 1991: Does low-frequency atmospheric variability exhibit regime-like behaviour? Tellus, 43AB , 1626.

    • Search Google Scholar
    • Export Citation
  • Wilks, S. S., 1935: On the independence of k sets of normally distributed statistical variables. Econometrica, 3 , 309326.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 186 186 29
PDF Downloads 156 156 27

Statistical Inference in Canonical Correlation Analyses Exemplified by the Influence of North Atlantic SST on European Climate

View More View Less
  • 1 Laboratoire d'Océanographie Dynamique et de Climatologie, Université Pierre et Marie Curie, Paris, France
  • | 2 Meteorologisches Institut, Universität Bonn, Bonn, Germany
© Get Permissions
Restricted access

Abstract

To encourage the use of the standard parametric test procedures in canonical correlation analysis, the tests are applied to investigate the influence of northern Atlantic SST on the Euro–Atlantic atmospheric circulation.

A comparison with a Monte Carlo testing procedure shows that the parametric tests perform properly given that at least one of the two multivariate variates is normally distributed. In this case the parametric tests are even superior to a Monte Carlo test procedure, when the estimation of the error level relies on relatively small Monte Carlo samples, which is often the case in climate studies. Even if the parametric test procedures fail due to departures from the independency assumption, they provide qualified variables to perform the more costly Monte Carlo testing procedure.

A significant influence of the northern Atlantic tripole on the atmospheric circulation was detected in ensemble simulations with the Hamburg ECHAM3 model forced with prescribed SST. Another signal already described by Czaja and Frankignoul exhibits a lagged influence of the SST on the atmosphere.

Current affiliation: Meteorologisches Institut, Universität Bonn, Bonn, Germany

Corresponding author address: Petra Friederichs, Laboratoire D'Océanographie Dynamique et Climatol., Université Pierre et Marie Curie, 4, Place Jussieu T14-E2, 75252 Paris Cedex 05 France. Email: pfried@lodyc.jussieu.fr

Abstract

To encourage the use of the standard parametric test procedures in canonical correlation analysis, the tests are applied to investigate the influence of northern Atlantic SST on the Euro–Atlantic atmospheric circulation.

A comparison with a Monte Carlo testing procedure shows that the parametric tests perform properly given that at least one of the two multivariate variates is normally distributed. In this case the parametric tests are even superior to a Monte Carlo test procedure, when the estimation of the error level relies on relatively small Monte Carlo samples, which is often the case in climate studies. Even if the parametric test procedures fail due to departures from the independency assumption, they provide qualified variables to perform the more costly Monte Carlo testing procedure.

A significant influence of the northern Atlantic tripole on the atmospheric circulation was detected in ensemble simulations with the Hamburg ECHAM3 model forced with prescribed SST. Another signal already described by Czaja and Frankignoul exhibits a lagged influence of the SST on the atmosphere.

Current affiliation: Meteorologisches Institut, Universität Bonn, Bonn, Germany

Corresponding author address: Petra Friederichs, Laboratoire D'Océanographie Dynamique et Climatol., Université Pierre et Marie Curie, 4, Place Jussieu T14-E2, 75252 Paris Cedex 05 France. Email: pfried@lodyc.jussieu.fr

Save