• Abdulla, F. A., , D. P. Lettenmaier, , E. F. Wood, , and J. A. Smith, 1996: Application of a macroscale hydrologic model to estimate the water balance of the Arkansas–Red River Basin. J. Geophys. Res., 101 , 74497459.

    • Search Google Scholar
    • Export Citation
  • Batjes, N. H., 1995: A homogenized soil data file for global environmental research: A subset of FAO, ISRIC and NCRS profiles. Tech. Report, International Soil Reference and Information Centre (ISRIC), Wageningen, Netherlands, 43 pp.

    • Search Google Scholar
    • Export Citation
  • Bloomfield, P., 1992: Trends in global temperature. Climatic Change, 21 , 116.

  • Bras, R. L., 1990: Hydrology: An Introduction to Hydrologic Science. Addison-Wesley, 643 pp.

  • Brown, R. D., 2000: Northern Hemisphere snow cover variability and change, 1915–97. J. Climate, 13 , 23392355.

  • Chiew, F. H. S., , and T. A. McMahon, 1993: Detection of trend or change in annual flow in Australian rivers. Int. J. Climatol., 13 , 643653.

    • Search Google Scholar
    • Export Citation
  • Cosby, B. J., , G. M. Hornberger, , R. B. Clapp, , and T. R. Ginn, 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20 , 682690.

    • Search Google Scholar
    • Export Citation
  • Critchfield, H. J., 1983: General Climatology. 4th ed. Prentice Hall, 453 pp.

  • Dai, A., , I. Y. Fung, , and A. D. Del Genio, 1997: Surface observed global land precipitation variations during 1900–88. J. Climate, 10 , 29432962.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , K. E. Trenberth, , and T. R. Karl, 1999: Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Climate, 12 , 24512473.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , G. A. Meehl, , W. M. Washington, , T. M. L. Wigley, , and J. A. Arblaster, 2001a: Ensemble simulation of twenty-first century climate changes: Business-as-usual versus CO2 stabilization. Bull. Amer. Meteor. Soc., 82 , 23772388.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , T. M. L. Wigley, , B. A. Boville, , J. T. Kiehl, , and L. E. Buja, 2001b: Climates of the twentieth and twenty-first centuries simulated by the NCAR climate system model. J. Climate, 14 , 485519.

    • Search Google Scholar
    • Export Citation
  • Doherty, R. M., , M. Hulme, , and C. G. Jones, 1999: A gridded reconstruction of land and ocean precipitation for the extended Tropics from 1974–1994. Int. J. Climatol., 19 , 119142.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and Coauthors. 1997: Maximum and minimum temperature trends for the globe. Science, 277 , 364367.

  • Easterling, D. R., , G. A. Meehl, , C. Parmesan, , S. A. Changnon, , T. R. Karl, , and L. O. Mearns, 2000: Climate extremes: Observations, modeling, and impacts. Science, 289 , 20682074.

    • Search Google Scholar
    • Export Citation
  • FAO, 1995: Digital Soil Map of the World and Derived Soil Properties (Version 3.5). FAO Land and Water Digital Media Series, CD-ROM.

  • Frei, A., , D. A. Robinson, , and M. G. Hughes, 1999: North American snow extent: 1900–1994. Int. J. Climatol., 19 , 15171534.

  • Galbraith, J. W., , and C. Green, 1992: Inference about trends in global temperature data. Climatic Change, 22 , 209221.

  • Genta, J. L., , G. Perez-Iribarren, , and C. R. Mechoso, 1998: A recent increasing trend in the streamflow of rivers in southeastern South America. J. Climate, 11 , 28582862.

    • Search Google Scholar
    • Export Citation
  • Gleick, P. H., 1989: Climate change, hydrology, and water resources. Rev. Geophys., 27 , 329344.

  • Golubev, V. S., , J. H. Lawrimore, , P. Y. Groisman, , N. A. Speranskaya, , S. A. Zhuravin, , M. J. Menne, , T. C. Peterson, , and R. W. Malone, 2001: Evaporation changes over the contiguous United States and the former USSR: A reassessment. Geophys. Res. Lett., 28 , 26652668.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. H., , J. A. T. Bye, , and R. A. D. Byron-Scott, 1996: Is global warming climate change? Nature, 380 , 478.

  • Graham, S. T., , J. S. Famiglietti, , and D. R. Maidment, 1999: Five minute, 1/2°, and 1° data sets of continental watersheds and river networks for use in regional and global hydrologic and climate system modeling studies. Water Resour. Res., 35 , 583587.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Y., , R. W. Knight, , and T. R. Karl, 2001: Heavy precipitation and high streamflow in the contiguous United States: Trends in the twentieth century. Bull. Amer. Meteor. Soc., 82 , 219246.

    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., , R. S. Defries, , J. R. G. Townshend, , and R. Sohlberg, 2000: Global land cover classification at 1km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21 , 13311364.

    • Search Google Scholar
    • Export Citation
  • Helsel, D. R., , and R. M. Hirsch, 1992: Statistical Methods in Water Resources. Elsevier, 522 pp.

  • Hisdal, H., , K. Stahl, , L. M. Tallaksen, , and S. Demuth, 2001: Have streamflow droughts in Europe become more severe or frequent? Int. J. Climatol., 21 , 317333.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., , Y. Ding, , D. J. Griggs, , M. Noguer, , P. J. van der Linden, , and D. Xiaosu, Eds.,. 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 944 pp.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors. 1997: The Global Precipitation Climatology Project (GPCP) Combined Precipitation dataset. Bull. Amer. Meteor. Soc., 78 , 520.

    • Search Google Scholar
    • Export Citation
  • Hughes, M. G., , and D. A. Robinson, 1996: Historical snow cover variability in the Great Plains region of the USA: 1910 through to 1993. Int. J. Climatol., 16 , 10051018.

    • Search Google Scholar
    • Export Citation
  • Hulme, M., 1995: Estimating global changes in precipitation. Weather, 50 , 3442.

  • Hulme, M., , T. J. Osborn, , and T. C. Johns, 1998: Precipitation sensitivity to global warming: Comparison of observations with HadCM2 simulations. Geophys. Res. Lett., 25 , 33793382.

    • Search Google Scholar
    • Export Citation
  • Idso, S. B., , and A. J. Brazel, 1984: Rising atmospheric carbon dioxide concentrations may increase streamflow. Nature, 312 , 5153.

  • Jones, P. D., 1994: Hemispheric surface air temperature variations: A reanalysis and an update to 1993. J. Climate, 7 , 17941802.

  • Jones, P. D., , and M. Hulme, 1996: Calculating regional climatic time series for temperature and precipitation: Methods and illustrations. Int. J. Climatol., 16 , 361377.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors. 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Karl, T. R., 1998: Regional trends and variations of temperature and precipitation. The Regional Impacts of Climate Change: An Assessment of Vulnerability, R. T. Watson, M. C. Zinyowera, and R. H. Moss, Eds., Cambridge University Press, 411–425.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., , and W. R. Knight, 1998: Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Amer. Meteor. Soc., 79 , 231241.

    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. Charles Griffin, 202 pp.

  • Kimball, J. S., , S. W. Running, , and R. R. Nemani, 1997: An improved method for estimating surface humidity from daily minimum temperature. Agric. For. Meteor., 85 , 8798.

    • Search Google Scholar
    • Export Citation
  • Lettenmaier, D. P., 1975: Detection of trends in water quality data from records with dependent observations. Water Resour. Res., 12 , 10371046.

    • Search Google Scholar
    • Export Citation
  • Lettenmaier, D. P., , E. F. Wood, , and J. R. Wallis, 1994: Hydro-climatological trends in the continental United States, 1948–88. J. Climate, 7 , 586607.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , D. P. Lettenmaier, , E. F. Wood, , and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99 , 1441514428.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , D. P. Lettenmaier, , and E. F. Wood, 1996: One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J. Geophys. Res., 101 , 2140321422.

    • Search Google Scholar
    • Export Citation
  • Lins, H. F., , and J. R. Slack, 1999: Streamflow trends in the United States. Geophys. Res. Lett., 26 , 227230.

  • Lohmann, D., , R. Notle-Holube, , and E. Raschke, 1996: A large-scale horizontal routing model to be coupled to land surface parameterization schemes. Tellus, 48A , 708721.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., , E. Raschke, , B. Nijssen, , and D. P. Lettenmaier, 1998a: Regional scale hydrology. I. Formulation of the VIC-2L model coupled to a routing model. Hydrol. Sci. J., 43 , 131141.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., and Coauthors. 1998b: The Project for Inter-comparison of Land-surface Parameterization Schemes (PILPS) Phase 2(c) Red–Arkansas River Basin experiment. 3. Spatial and temporal analysis of water fluxes. Global Planet. Change, 20 , 161179.

    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Non-parametric test against trend. Econometrika, 13 , 245259.

  • Maurer, E. P., , G. M. O'Donnell, , D. P. Lettenmaier, , and J. O. Roads, 2001: Evaluation of the land surface water budget in NCEP/NCAR and NCEP/DOE reanalyses using an off-line hydrologic model. J. Geophys. Res., 106 , 1784117862.

    • Search Google Scholar
    • Export Citation
  • McCabe Jr., G. J., , and D. M. Wolock, 1997: Climate change and the detection of trends in annual runoff. Climate Res., 8 , 129134.

  • McCarthy, J. J., , O. F. Canziani, , N. A. Leary, , D. J. Dokken, , and K. S. White, Eds.,. 2001: Climate Change 2001: Impacts, Adaptation and Vulnerability. Cambridge University Press, 1000 pp.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , F. Zwiers, , J. Evans, , T. Knutson, , L. Mearns, , and P. Whetton, 2000: Trends in extreme weather and climate events: Issues related to modeling extremes in projections of future climate change. Bull. Amer. Meteor. Soc., 81 , 427436.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., , R. T. Wetherald, , K. A. Dunne, , and T. L. Delworth, 2002: Increasing risk of great floods in a changing climate. Nature, 415 , 514517.

    • Search Google Scholar
    • Export Citation
  • Mitosek, H. T., 1995: Climate variability and change within the discharge time series: A statistical approach. Climatic Change, 29 , 101116.

    • Search Google Scholar
    • Export Citation
  • Morel, P., 2001: Why GEWEX? The agenda for a global energy and water cycle research program. GEWEX News, Vol. 11, No. 1, 7–11.

  • Myneni, R. B., , R. R. Nemani, , and S. W. Running, 1997: Estimation of global leaf area index and absorbed PAR using radiative transfer models. IEEE Trans. Geosci. Remote Sens., 35 , 13801393.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., , D. P. Lettenmaier, , X. Liang, , S. W. Wetzel, , and E. F. Wood, 1997: Streamflow simulation for continental-scale river basins. Water Resour. Res., 33 , 711724.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., , G. M. O'Donnell, , D. P. Lettenmaier, , D. Lohmann, , and E. F. Wood, 2001a: Predicting the discharge of global rivers. J. Climate, 14 , 33073323.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., , R. Schnur, , and D. P. Lettenmaier, 2001b: Global retrospective estimation of soil moisture using the Variable Infiltration Capacity land surface model, 1980–93. J. Climate, 14 , 17901808.

    • Search Google Scholar
    • Export Citation
  • Richards, G. R., 1993: Change in global temperature: A statistical analysis. J. Climate, 6 , 546559.

  • Robock, A., , Y. V. Konstantin, , G. Srinivasan, , J. K. Entin, , S. E. Hollinger, , N. A. Speranskaya, , S. Liu, , and A. Namkhai, 2000: The global soil moisture data bank. Bull. Amer. Meteor. Soc., 81 , 12811299.

    • Search Google Scholar
    • Export Citation
  • Row, L. W., , D. A. Hastings, , and P. K. Dunbar, 1995: TerrainBase Worldwide Digital Terrain Data Documentation Manual. CD-ROM Release 1.0, National Geophysical Data Center, Boulder, CO.

    • Search Google Scholar
    • Export Citation
  • Theil, H., 1950: A rank-invariant method of linear and polynomial regression analysis. Indagationes Math., 12 , 8591.

  • Thornton, P. E., , and S. W. Running, 1999: An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric. For. Meteor., 93 , 211228.

    • Search Google Scholar
    • Export Citation
  • Washington, W. M., and Coauthors. 2000: Parallel climate model (PCM) control and transient simulations. Climate Dyn., 16 , 755774.

  • WCRP, 1990: The Global Precipitation Climatology Project—Implementation and data management plan. WMO Tech. Doc. 367, Geneva, Switzerland, 47 pp. and appendixes.

    • Search Google Scholar
    • Export Citation
  • Wigley, T. M. L., , and P. D. Jones, 1981: Detecting CO2-induced climate change. Nature, 292 , 205208.

  • Wigley, T. M. L., , and P. D. Jones, 1985: Influences of precipitation changes and direct CO2 effects on streamflow. Nature, 314 , 149152.

    • Search Google Scholar
    • Export Citation
  • Wood, E. F., , D. P. Lettenmaier, , X. Liang, , B. Nijssen, , and S. W. Wetzel, 1997: Hydrological modeling of continental-scale basins. Annu. Rev. Earth Planet. Sci., 25 , 279300.

    • Search Google Scholar
    • Export Citation
  • Woodward, W. A., , and H. L. Gray, 1993: Global warming and the problem of testing for trend in time series data. J. Climate, 6 , 953962.

    • Search Google Scholar
    • Export Citation
  • Xie, P. P., , and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392557.

    • Search Google Scholar
    • Export Citation
  • Zhang, X. B., , K. D. Harvey, , W. D. Hogg, , and T. R. Yuzyk, 2001: Trends in Canadian streamflow. Water Resour. Res., 37 , 987998.

  • Zheng, X., , and R. E. Basher, 1999: Structural time series models and trend detection in global and regional temperature series. J. Climate, 12 , 23472358.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 68 68 10
PDF Downloads 52 52 5

Detection of Intensification in Global- and Continental-Scale Hydrological Cycles: Temporal Scale of Evaluation

View More View Less
  • 1 Environmental Engineering and Water Resources, Princeton University, Princeton, New Jersey
  • | 2 Civil Engineering, University of Washington, Seattle, Washington
  • | 3 Department of Civil Engineering and Engineering Mechanics, and Department of Hydrology and Water Resources, The University of Arizona, Tucson, Arizona
  • | 4 Environmental Engineering and Water Resources, Princeton University, Princeton, New Jersey
  • | 5 Civil Engineering, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

Diagnostic studies of offline, global-scale Variable Infiltration Capacity (VIC) model simulations of terrestrial water budgets and simulations of the climate of the twenty-first century using the parallel climate model (PCM) are used to estimate the time required to detect plausible changes in precipitation (P), evaporation (E), and discharge (Q) if the global water cycle intensifies in response to global warming. Given the annual variability in these continental hydrological cycle components, several decades to perhaps more than a century of observations are needed to detect water cycle changes on the order of magnitude predicted by many global climate model studies simulating global warming scenarios. Global increases in precipitation, evaporation, and runoff of 0.6, 0.4, and 0.2 mm yr−1 require approximately 30–45, 25–35, and 50–60 yr, respectively, to detect with high confidence. These conservative detection time estimates are based on statistical error criteria (α = 0.05, β = 0.10) that are associated with high statistical confidence, 1 − α (accept hypothesis of intensification when true, i.e., intensification is occurring), and high statistical power, 1 − β (reject hypothesis of intensification when false, i.e., intensification is not occurring). If one is willing to accept a higher degree of risk in making a statistical error, the detection time estimates can be reduced substantially. Owing in part to greater variability, detection time of changes in continental P, E, and Q are longer than those for the globe. Similar calculations performed for three Global Energy and Water Experiment (GEWEX) basins reveal that minimum detection time for some of these basins may be longer than that for the corresponding continent as a whole, thereby calling into question the appropriateness of using continental-scale basins alone for rapid detection of changes in continental water cycles. A case is made for implementing networks of small-scale indicator basins, which collectively mimic the variability in continental P, E, and Q, to detect acceleration in the global water cycle.

Corresponding author address: Dr. Alan D. Ziegler, Water Resources Program, Princeton University, CEE E-Quad E-228, Princeton, NJ 08544. Email: adz@princeton.edu

Abstract

Diagnostic studies of offline, global-scale Variable Infiltration Capacity (VIC) model simulations of terrestrial water budgets and simulations of the climate of the twenty-first century using the parallel climate model (PCM) are used to estimate the time required to detect plausible changes in precipitation (P), evaporation (E), and discharge (Q) if the global water cycle intensifies in response to global warming. Given the annual variability in these continental hydrological cycle components, several decades to perhaps more than a century of observations are needed to detect water cycle changes on the order of magnitude predicted by many global climate model studies simulating global warming scenarios. Global increases in precipitation, evaporation, and runoff of 0.6, 0.4, and 0.2 mm yr−1 require approximately 30–45, 25–35, and 50–60 yr, respectively, to detect with high confidence. These conservative detection time estimates are based on statistical error criteria (α = 0.05, β = 0.10) that are associated with high statistical confidence, 1 − α (accept hypothesis of intensification when true, i.e., intensification is occurring), and high statistical power, 1 − β (reject hypothesis of intensification when false, i.e., intensification is not occurring). If one is willing to accept a higher degree of risk in making a statistical error, the detection time estimates can be reduced substantially. Owing in part to greater variability, detection time of changes in continental P, E, and Q are longer than those for the globe. Similar calculations performed for three Global Energy and Water Experiment (GEWEX) basins reveal that minimum detection time for some of these basins may be longer than that for the corresponding continent as a whole, thereby calling into question the appropriateness of using continental-scale basins alone for rapid detection of changes in continental water cycles. A case is made for implementing networks of small-scale indicator basins, which collectively mimic the variability in continental P, E, and Q, to detect acceleration in the global water cycle.

Corresponding author address: Dr. Alan D. Ziegler, Water Resources Program, Princeton University, CEE E-Quad E-228, Princeton, NJ 08544. Email: adz@princeton.edu

Save