• Ataktürk, S. S., , and K. B. Katsaros, 1998: Estimates of surface humidity and wind speed obtained from satellite data in the stratocumulus regime in the Azores region. Remote Sensing of the Pacific Ocean by Satellites, R. A. Brown, Ed., Southwood Press, 16–22.

    • Search Google Scholar
    • Export Citation
  • Baumgartner, A., , and E. Reichel, 1975: The World Water Balance. Elsevier Science, 179 pp.

  • Beljaars, A. C. M., 1994: The impact of some aspects of the boundary layer scheme in the ECMWF model. Proc. Seminar on Parameterization of Sub-Grid Scale Processes, Reading, United Kingdom, European Centre for Medium-Range Weather Forecasts, 125–161.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., , and P. Viterbo, 1998: The role of the boundary layer in a numerical weather prediction model. Clear and Cloudy Boundary Layers, A. A. M. Holtslag and P. G. Dunkerke, Eds., Royal Netherlands Academy of Arts and Science, 287–304.

    • Search Google Scholar
    • Export Citation
  • Bentamy, A., , Y. Quilfen, , P. Quefeulou, , and A. Cavanié, 1994: Calibration and validation of the ERS-1 scatterometer. IFREMER Tech. Rep. DRO/OS-94-01, 80 pp.

    • Search Google Scholar
    • Export Citation
  • Bentamy, A., , Y. Quilfen, , F. Gohin, , N. Grima, , M. Lenaour, , and J. Servain, 1996: Determination and validation of average field from ERS-1 scatterometer measurements. Global Atmos.–Ocean Syst., 4 , 129.

    • Search Google Scholar
    • Export Citation
  • Bentamy, A., , P. Queffeulou, , Y. Quilfen, , and K. Katsaros, 1999: Ocean surface wind fields estimated from satellite active and passive microwave instruments. IEEE Trans. Geosci. Remote Sens., 37 , 24692486.

    • Search Google Scholar
    • Export Citation
  • Bentamy, A., , K. B. Katsaros, , W. M. Drennan, , and E. B. Forde, 2002: Daily surface wind fields produced by merged satellite data. Gas Transfer at Water Surfaces, Geophys. Monogr., No. 127, Amer. Geophys. Union, 343–349.

    • Search Google Scholar
    • Export Citation
  • Bunker, A. F., 1976: Computations of surface energy flux and annual air–sea interaction cycles of the North Atlantic Ocean. Mon. Wea. Rev., 104 , 11221140.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., and Coauthors. 1998: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Quart. J. Roy. Meteor. Soc., 124B , 17831807.

    • Search Google Scholar
    • Export Citation
  • da Silva, A. M., , C. C. Young, , and S. Levitus, 1994: Anomalies of Fresh Water Fluxes. Vol. 4, Atlas of Surface Marine Data, NOAA Atlas NESDIS 9, 308 pp.

    • Search Google Scholar
    • Export Citation
  • da Silva, A. M., , C. C. Young, , and S. Levitus, 1995: Towards a revised Beaufort equivalent scale. Proc. Int. COADS Winds Workshop, Kiel, Germany, National Oceanic and Atmospheric Administration, 270–286.

    • Search Google Scholar
    • Export Citation
  • DeCosmo, J., , K. B. Katsaros, , S. D. Smith, , R. J. Anderson, , W. Oost, , K. Bumke, , and H. Chadwick, 1996: Air–sea exchange of water vapor and sensible heat: The Humidity Exchange Over the Sea (HEXOS) results. J. Geophys. Res., 101 , 1200112016.

    • Search Google Scholar
    • Export Citation
  • Esbensen, S. K., , and Y. Kushnir, 1981: The heat budget of the global ocean: An atlas based on estimates from surface marine observations. Climatic Research Institute, Oregon State University Rep. 29, 27 pp. and 188 figs.

    • Search Google Scholar
    • Export Citation
  • Esbensen, S. K., , D. B. Chelton, , D. Vickers, , and J. Sun, 1993: An analysis of errors in Special Sensor Microwave/Imager evaporation estimates over the global oceans. J. Geophys. Res., 98 , 70817101.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , D. P. Rogers, , J. B. Edson, , and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for TOGA-COARE. J. Geophys. Res., 101 , 37473764.

    • Search Google Scholar
    • Export Citation
  • Freilich, M. H., 1997: Validation of vector magnitude datasets: Effect of random component errors. J. Atmos. Oceanic Technol., 14 , 695703.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., , and B. C. Weare, 1997: Uncertainties in global ocean surface heat flux climatologies derived from ship observations. J. Climate, 10 , 27642781.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., , C. W. Landsea, , A. M. Mestas-Nuñez, , and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293 , 474479.

    • Search Google Scholar
    • Export Citation
  • Goodberlet, M. A., , C. T. Swift, , and J. C. Wilkerson, 1989: Remote sensing of ocean surface winds with the Special Sensor Microwave/Imager. J. Geophys. Res., 94 , 1454714555.

    • Search Google Scholar
    • Export Citation
  • Grima, N., , A. Bentamy, , K. Katsaros, , and Y. Quilfen, 1999: Sensitivity of an oceanic general circulation model forced by satellite wind stress fields. J. Geophys. Res., 104 , 79677989.

    • Search Google Scholar
    • Export Citation
  • Halpern, D., 1993: Validation of Special Sensor Microwave/Imager monthly mean wind speeds from July 1987 to December 1989. IEEE Trans. Geosci. Remote Sens., 31 , 692699.

    • Search Google Scholar
    • Export Citation
  • Halpern, D., , V. Zlotnicki, , P. Woiceshyn, , O. Brown, , M. Freilich, , and F. Wentz, 1998: An atlas of monthly mean distributions of SSM/I surface wind speed, AVHRR sea surface temperature, AMI surface wind velocity, and TOPEX/POSEIDON sea surface height during 1996. Jet Propulsion Laboratory, Publ. 98-11, 101 pp.

    • Search Google Scholar
    • Export Citation
  • Hasse, L., , and S. D. Smith, 1997: Local sea surface wind, wind stress, and sensible and latent heat fluxes. J. Climate, 10 , 27112724.

    • Search Google Scholar
    • Export Citation
  • Isemer, H. J., , and L. Hasse, 1987: The Bunker Climate Atlas of the North Atlantic Ocean. Vol. 2. Springer-Verlag, 252 pp.

  • Jet Propulsion Laboratory, 1996: NASA scatterometer science data product users manual: Overview and geophysical data products. Jet Propulsion Laboratory, Publ. D-12985, 66 pp.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., 2001: A comparison of ECMWF, NCEP–NCAR, and SOC surface heat fluxes with moored buoy measurements in the subduction region of the northeast Atlantic. J. Climate, 14 , 17801789.

    • Search Google Scholar
    • Export Citation
  • Jourdan, D., , P. Peterson, , and C. Gauthier, 1997: Oceanic freshwater budget and transport as derived from satellite radiometric data. J. Phys. Oceanogr., 27 , 457467.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors. 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437472.

  • Kent, E. C., , and P. K. Taylor, 1995: A comparison of sensible and latent heat flux estimates for the North Atlantic Ocean. J. Phys. Oceanogr., 25 , 15301549.

    • Search Google Scholar
    • Export Citation
  • Konda, M., , N. Imasato, , and A. Shibata, 1996: A new method to determine near sea surface air temperature by using satellite data. J. Geophys. Res., 101 , 1434914360.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., , R. A. Pielke, , A. M. Mestas-Nuñez, , and J. A. Knaff, 1999: Atlantic basin hurricanes: Indices of climatic changes. Climatic Change, 42 , 89129.

    • Search Google Scholar
    • Export Citation
  • Lindau, R., 1995: A new Beaufort equivalent scale. Proc. Int. COADS Winds Workshop, Kiel, Germany, National Oceanic and Atmospheric Administration, 232–252.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., 1986: Statistical relation between monthly precipitable water and surface-level humidity over global oceans. Mon. Wea. Rev., 114 , 15911602.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., , K. B. Katsaros, , and J. A. Businger, 1979: Bulk parameterization of air–sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36 , 17221735.

    • Search Google Scholar
    • Export Citation
  • Louis, J-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17 , 187202.

  • Madec, G., , P. Delecluse, , M. Imbard, , and C. Lévy, 1998: OPA 8.1 ocean general circulation model reference manual. Note du Pole de Modelisation, Institut Pierre-Simon Laplace, Paris, France, N11, 91 pp.

    • Search Google Scholar
    • Export Citation
  • Maroni, C., 1996: Offline wind field production. CERSAT News, No. 5, IFREMER Publ., 2–3. [Available online at http://www.ifremer.fr/cersat/FICHES/CNEWS/E_CNEWS.htm.].

    • Search Google Scholar
    • Export Citation
  • Miller, D. K., , and K. B. Katsaros, 1992: Satellite derived surface latent heat fluxes in a rapidly intensifying marine cyclone. Mon. Wea. Rev., 120 , 10931107.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., , and K. B. Katsaros, 1992: Morning–Evening Differences in Global and Regional Oceanic Precipitation as Observed by the SSM/I. Purdue University Press, 4 pp.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., , and K. B. Katsaros, 1994: The response of the SSM/I to the marine environment. Part II: A parameterization of the effect of the sea surface slope distribution on emission and reflection. J. Atmos. Oceanic Technol., 11 , 617628.

    • Search Google Scholar
    • Export Citation
  • Quilfen, Y., 1995: ERS-1 off-line wind scatterometer products. IFREMER Tech. Report, 75 pp.

  • Quilfen, Y., , A. Bentamy, , P. Delecluse, , K. B. Katsaros, , and N. Grima, 2000: Prediction of sea level anomalies using ocean circulation model forced by scatterometer wind and validation using TOPEX/Poseidon data. IEEE Trans. Geosci. Remote Sens., 38 , 18711884.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Schlüssel, P., , L. Schanz, , and G. English, 1995: Retrieval of latent heat flux and long wave irradiance at the sea surface from SSM/I and AVHRR measurements. Adv. Space Res., 16 , 107115.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., , and S. E. Wijffels, 1993: The role of the ocean in the global water cycle. Interactions between Global Climate Subsystems, Geophys. Monogr., No. 75, Amer. Geophys. Union, 77–84.

    • Search Google Scholar
    • Export Citation
  • Schulz, J., , P. Schlüssel, , and H. Grassl, 1993: Water vapor in the atmospheric boundary layer over oceans from SSM/I measurements. Int. J. Remote Sens., 14 , 27732789.

    • Search Google Scholar
    • Export Citation
  • Schulz, J., , J. Meywerk, , S. Ewald, , and P. Schlüssel, 1997: Evaluation of satellite-derived latent heat fluxes. J. Climate, 10 , 27822795.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93 , 1546715472.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., 1999: How well can we monitor and predict an intensification of the hydrological cycle? GEWEX News, Vol. 9, No. 3, 4–5.

  • Taylor, P. K., , E. C. Kent, , M. J. Yelland, , and B. I. Moat, 1995: The accuracy of wind observations from ships. Proc. Int. COADS Winds Workshop, Kiel, Germany, National Oceanic and Atmospheric Administration, 132–155.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., , and D. K. Smith, 1999: A model function for the ocean-normalized radar cross-section at 14 GHz derived from NSCAT observations. J. Geophys. Res., 104 , 1144911514.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., , L. A. Mattox, , and S. Peteherych, 1986: New algorithms for microwave measurements of ocean winds: Applications to Seasat and the Special Sensor Microwave/Imager. J. Geophys. Res., 91 , 22892307.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., , H. F. Diaz, , J. D. Elms, , and S. J. Worley, 1998: COADS release 2 data and metadata enhancements for improvements of marine surface flux fields. Phys. Chem. Earth, 23 , 517526.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., , M. Zhao, , and R. E. Dickinson, 1998: Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA-COARE and TAO data. J. Climate, 11 , 26282644.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 340 340 24
PDF Downloads 167 167 15

Satellite Estimates of Wind Speed and Latent Heat Flux over the Global Oceans

View More View Less
  • 1 Institut Français pour la Recherche et l'Exploitation de la Mer (IFREMER), Plouzane, France
  • | 2 NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
  • | 3 Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida
  • | 4 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 5 NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
  • | 6 Météo-France, Centre de Météorologie Spatiale, Lannion, France
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Surface fluxes of momentum, freshwater, and energy across the air–sea interface determine oceanic circulation and its variability at all timescales. The goal of this paper is to estimate and examine some ocean surface flux variables using satellite measurements. The remotely sensed data come from the European Remote Sensing (ERS) satellite scatterometer on ERS-2, NASA scatterometer (NSCAT), and several Defense Meteorological Satellite Program (DMSP) radiometers [Special Sensor Microwave Imager (SSM/I)] on board the satellites F10F14. The sea surface temperature comes from daily analysis calculated from Advanced Very High Resolution Radiometer (AVHRR) measurements. This study focuses on the 9-month period (October 1996–June 1997) of the NSCAT mission. To ensure high quality of the merged surface parameter fields, comparisons between different satellite estimates for the same variable have been performed, and bias corrections have been applied so that they are compatible with each other. The satellite flux fields are compared to in situ observations from buoys and ships globally and in different regions of the ocean. It is found that the root-mean-square (rms) difference with weekly averaged wind speeds is less than 2.5 m s−1 and the correlation coefficient is higher than 0.8. For weekly latent heat flux, the rms difference between satellite and buoys does not exceed 30 W m−2. The comparisons with weekly ship latent heat flux estimates gives an rms difference approaching 40 W m−2. Comparisons are also made between satellite fields and atmospheric analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF) and reanalyses from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR). The wind speeds and latent heat fluxes from these atmospheric analyses compare reasonably well with the satellite estimates. The main discrepancies are found in regions and seasons of large air–sea temperature difference and high wind speed, such as the Gulf Stream during the winter season.

Corresponding author address: Dr. Kristina B. Katsaros, Office of Oceanic and Atmospheric Research, NOAA/Atlantic Oceanographic and Meteorological Laboratory, 4301 Rickenbacker Causeway, Miami, FL 33149. Email: kristina.katsaros@noaa.gov

Abstract

Surface fluxes of momentum, freshwater, and energy across the air–sea interface determine oceanic circulation and its variability at all timescales. The goal of this paper is to estimate and examine some ocean surface flux variables using satellite measurements. The remotely sensed data come from the European Remote Sensing (ERS) satellite scatterometer on ERS-2, NASA scatterometer (NSCAT), and several Defense Meteorological Satellite Program (DMSP) radiometers [Special Sensor Microwave Imager (SSM/I)] on board the satellites F10F14. The sea surface temperature comes from daily analysis calculated from Advanced Very High Resolution Radiometer (AVHRR) measurements. This study focuses on the 9-month period (October 1996–June 1997) of the NSCAT mission. To ensure high quality of the merged surface parameter fields, comparisons between different satellite estimates for the same variable have been performed, and bias corrections have been applied so that they are compatible with each other. The satellite flux fields are compared to in situ observations from buoys and ships globally and in different regions of the ocean. It is found that the root-mean-square (rms) difference with weekly averaged wind speeds is less than 2.5 m s−1 and the correlation coefficient is higher than 0.8. For weekly latent heat flux, the rms difference between satellite and buoys does not exceed 30 W m−2. The comparisons with weekly ship latent heat flux estimates gives an rms difference approaching 40 W m−2. Comparisons are also made between satellite fields and atmospheric analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF) and reanalyses from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR). The wind speeds and latent heat fluxes from these atmospheric analyses compare reasonably well with the satellite estimates. The main discrepancies are found in regions and seasons of large air–sea temperature difference and high wind speed, such as the Gulf Stream during the winter season.

Corresponding author address: Dr. Kristina B. Katsaros, Office of Oceanic and Atmospheric Research, NOAA/Atlantic Oceanographic and Meteorological Laboratory, 4301 Rickenbacker Causeway, Miami, FL 33149. Email: kristina.katsaros@noaa.gov

Save