• Atlas, R., , S. C. Bloom, , R. N. Hoffman, , J. V. Ardizzone, , and G. Brin, 1991: Space-based surface wind vectors to aid understanding of air–sea interactions. Eos, Trans. Amer. Geophys. Union, 201 , 204208.

    • Search Google Scholar
    • Export Citation
  • Bony, S., , Y. Sud, , K-M. Lau, , J. Susskind, , and S. Saha, 1997: Comparison and satellite assessment of NASA/DAO and NCEP–NCAR reanalyses over tropical ocean: Atmospheric hydrology and radiation. J. Climate, 10 , 14411462.

    • Search Google Scholar
    • Export Citation
  • Borovikov, A., , M. M. Rienecker, , and P. S. Schopf, 2001: Surface heat balance in the equatorial Pacific Ocean: Climatology and the warming event of 1994–95. J. Climate, 14 , 26242641.

    • Search Google Scholar
    • Export Citation
  • Campana, K. A., , Y. Hou, , I. Laszlo, , R. T. Pinker, , and S-K. Yang, 1993: Comparison between NMC forecast-model-computed and satellite-retrieved shortwave radiation fluxes. IRS '92: Current Problems in Atmospheric Radiation, S. Keevallik and O. Kärner, Eds., A. Deepak Publishing, 218–223.

    • Search Google Scholar
    • Export Citation
  • Campana, K. A., , Y. Hou, , B. Balasubramaniyan, , R. T. Pinker, , and I. Laszlo, 1994: Evaluation of NWP model-computed SW radiative fluxes against satellite retrievals. Preprints, Eighth Conf. on Atmospheric Radiation, Nashville, TN, Amer. Meteor. Soc., 523–525.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and Coauthors. 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14 , 14791498.

    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., , and M. J. McPhaden, 1997: The upper ocean heat balance in the western equatorial Pacific warm pool during September–December 1992. J. Geophys. Res., 102 (C4) 85338553.

    • Search Google Scholar
    • Export Citation
  • Garatuza-Payan, J., , R. T. Pinker, , W. J. Shuttleworth, , and C. J. Watts, 2001: Solar radiation and evapotranspiration in northern Mexico estimated from remotely sensed measurements of cloudiness. Hydrol. Sci., 46 , 465478.

    • Search Google Scholar
    • Export Citation
  • Hahmann, A., , D. M. Ward, , and R. E. Dickinson, 1995: Land surface temperature and radiative fluxes response of the NCAR CCM2/Biosphere–Atmosphere Transfer Scheme to modifications in the optical properties of clouds. J. Geophys. Res., 100 (D11) 2323923252.

    • Search Google Scholar
    • Export Citation
  • Harrison, E. F., , P. Minnis, , B. Barkstorm, , and G. Gibson, 1993: Radiation budget at the top of the atmosphere. Atlas of Satellite Observations Related to Global Change, R. J. Gurney, J. L. Foster, and C. Parkinson, Eds., Cambridge University Press, 19–38.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , and J. Glick, 1997: Intraseasonal air–sea interaction in the tropical Indian and Pacific Oceans. J. Climate, 10 , 647661.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., , and P. S. Schopf, 1998: Decadal variability in ENSO predictability and prediction. J. Climate, 11 , 28042822.

  • Krishnamurti, T. N., , D. K. Osterhof, , and A. V. Mehta, 1988: Air–sea interaction on the timescale of 30–50 days. J. Atmos. Sci., 45 , 13041322.

    • Search Google Scholar
    • Export Citation
  • Laszlo, I., , R. T. Pinker, , and C. H. Whitlock, 1997: Comparison of shortwave fluxes derived from two versions of the ISCCP products. IRS'96: Current Problems in Atmospheric Radiation, W. Smith, Ed., A. Deepak Publishing, 762–765.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., , and C-H. Sui, 1997: Mechanisms of short-term sea surface temperature regulation: Observation during TOGA COARE. J. Climate, 10 , 465472.

    • Search Google Scholar
    • Export Citation
  • Legeckis, R., 1977: Long waves in the eastern equatorial Pacific Ocean: A view from a geostationary satellite. Science, 197 , 11791181.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., , and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, National Ocean Atmosphere Administration Atlas NESDIS 4, 117 pp.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1993: TOGA-TAO and 1991–1993 El Niño-Southern Oscillation event. Oceanography, 6 , 3644.

  • McPhaden, M. J., 1995: The Tropical Atmosphere-Ocean Array is completed. Bull. Amer. Meteor. Soc., 76 , 739741.

  • Neelin, J. D., , D. S. Battisti, , A. C. Hirst, , F-F. Jin, , Y. Wakata, , T. Yamagata, , and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 , 1426114290.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., , and E. B. Kraus, 1977: One-dimensional models of the upper ocean. Modeling and Prediction of the Upper Layers of the Ocean, E. B. Kraus, Ed., Pergamon, 143–172.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R., , and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11 , 14431451.

    • Search Google Scholar
    • Export Citation
  • Pinker, R. T., , and I. Laszlo, 1992: Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteor., 31 , 194211.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., , and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110 , 354384.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , and T. S. Smith, 1994: Improved global sea surface temperature analysis. J. Climate, 7 , 929948.

  • Rosati, A., , and K. Miyakoda, 1988: A general circulation model for upper ocean simulation. J. Phys. Oceanogr., 18 , 16011626.

  • Rossow, W. B., , and R. A. Schiffer, 1991: ISCCP Cloud Data Products. Bull. Amer. Meteor. Soc., 72 , 220.

  • Schiffer, R. A., , and W. B. Rossow, 1985: ISCCP Global Radiance Set: A new resource for climate research. Bull. Amer. Meteor. Soc., 66 , 14981505.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., , and A. Loughe, 1995: A reduced-gravity isopycnal ocean model: Hindcasts of El Niño. Mon. Wea. Rev., 123 , 28392863.

  • Seager, R., , M. B. Blumenthal, , and Y. Kushnir, 1995: An advective atmospheric mixed layer model for ocean modeling proposes: Global simulation of surface heat fluxes. J. Climate, 8 , 19511964.

    • Search Google Scholar
    • Export Citation
  • Shapiro, R., 1970: Smoothing, filtering and boundary effects. Rev. Geophys. Space Phys., 8 , 359387.

  • Shinoda, T., , and H. H. Hendon, 2001: Upper-ocean heat budget in response to the Madden–Julian oscillation in the western equatorial Pacific. J. Climate, 14 , 41474165.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., , H. H. Hendon, , and J. Glick, 1998: Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans. J. Climate, 11 , 16851702.

    • Search Google Scholar
    • Export Citation
  • Sui, C-H., , X. Li, , K-M. Lau, , and D. Adamec, 1997: Multi-scale air–sea interactions during TOGA COARE. Mon. Wea. Rev., 125 , 448462.

  • Sui, C-H., , X. Li, , and K-M. Lau, 1998a: Radiative-convective processes in simulated diurnal variations of tropical oceanic convection. J. Atmos. Sci., 55 , 23452357.

    • Search Google Scholar
    • Export Citation
  • Sui, C-H., , X. Li, , and K-M. Lau, 1998b: Selective absorption of solar radiation and upper ocean temperature in the equatorial western Pacific. J. Geophys. Res., 103 (C5) 1031310321.

    • Search Google Scholar
    • Export Citation
  • Thum, N., , S. K. Esbensen, , D. B. Chelton, , and M. J. McPhaden, 2002: Air–sea heat exchange along the northern sea surface temperature front in the eastern tropical Pacific. J. Climate, 15 , 33613378.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , A. Barcilon, , and Z. Fang, 1999: Stochastic dynamics of El Niño–Southern Oscillation. J. Atmos. Sci., 56 , 523.

  • Ward, D. M., 1995: Comparison of surface solar radiation budget derived from satellite data with that simulated by the NCAR CCM2. J. Climate, 8 , 28242842.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., , and S. P. Anderson, 1996: Surface meteorology and air–sea fluxes in the western equatorial Pacific warm pool during the TOGA–Coupled Ocean–Atmosphere Response Experiment. J. Climate, 9 , 19591990.

    • Search Google Scholar
    • Export Citation
  • Whitlock, C. H., and Coauthors. 1995: First Global WCRP Shortwave surface Radiation Budget Data Set. Bull. Amer. Meteor. Soc., 76 , 118.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1996: Analysis of global monthly precipitation using gauge observations, satellite estimates and numerical model predictions. J. Climate, 9 , 840858.

    • Search Google Scholar
    • Export Citation
  • Yang, S., , K-M. Lau, , and P. S. Schopf, 1999: Sensitivity of the tropical Pacific Ocean to precipitation-induced freshwater flux. Climate Dyn., 15 , 737750.

    • Search Google Scholar
    • Export Citation
  • Yucel, I., , W. J. Shuttleworth, , R. T. Pinker, , L. Lu, , and S. Sorooshian, 2002: Impact of ingesting satellite-derived cloud cover into the regional atmospheric modeling system. Mon. Wea. Rev., 130 , 610628.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., , and M. J. McPhaden, 1995: The relationship between sea surface temperature and latent heat flux in the equatorial Pacific. J. Climate, 8 , 589605.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., , H. H. Hendon, , W. S. Kessler, , and A. J. Rosati, 2001: A workshop on the MJO and ENSO. Bull. Amer. Meteor. Soc., 82 , 971976.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 114 114 4
PDF Downloads 17 17 0

The Role of Daily Surface Forcing in the Upper Ocean over the Tropical Pacific: A Numerical Study

View More View Less
  • 1 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 2 NOAA/NESDIS/Office of Research and Applications, Camp Springs, Maryland
  • | 3 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 4 NOAA/NESDIS/Office of Research and Applications, Camp Springs, Maryland
  • | 5 Department of Meteorology, University of Maryland at College Park, College Park, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The impacts of high-frequency surface forcing in the upper ocean over the equatorial Pacific are investigated using a nonlinear reduced-gravity isopycnal ocean circulation model forced by daily and monthly mean forcing. The simulated sea surface temperature (SST) in the daily forcing experiment is colder than that in the monthly forcing experiment near the equator. A mixed layer heat budget calculation shows that the net surface heat flux is primarily responsible for the SST difference in the western Pacific, while zonal advection accounts for the SST difference in the eastern Pacific where other budget terms are large but canceling each other. The daily forcing primarily enhances vertical mixing that reduces the vertical shear of the upper ocean. It also changes the net heat into the ocean through two contrasting processes: one is the increased surface latent heat loss induced by transient winds and the other is colder SST due to stronger mixing, which further reduces heat loss at the surface. As a result, the annual mean net surface heat flux into the ocean is reduced and the meridional thermal advection is weaker. The daily forcing also impacts the variation of the thermocline through a changing mixed layer depth so that the temperature in the simulation with the daily forcing is warmer around the thermocline.

Current affiliation: Institute of Hydrological Sciences, National Central University, Junli, Taiwan

Corresponding author address: Dr. Chung-Hsiung Sui, Institute of Hydrological Sciences, National Central University, 300, Junda Rd., Junli City, Taoyan, 320 Taiwan. Email: sui@cc.ncu.edu.tw

Abstract

The impacts of high-frequency surface forcing in the upper ocean over the equatorial Pacific are investigated using a nonlinear reduced-gravity isopycnal ocean circulation model forced by daily and monthly mean forcing. The simulated sea surface temperature (SST) in the daily forcing experiment is colder than that in the monthly forcing experiment near the equator. A mixed layer heat budget calculation shows that the net surface heat flux is primarily responsible for the SST difference in the western Pacific, while zonal advection accounts for the SST difference in the eastern Pacific where other budget terms are large but canceling each other. The daily forcing primarily enhances vertical mixing that reduces the vertical shear of the upper ocean. It also changes the net heat into the ocean through two contrasting processes: one is the increased surface latent heat loss induced by transient winds and the other is colder SST due to stronger mixing, which further reduces heat loss at the surface. As a result, the annual mean net surface heat flux into the ocean is reduced and the meridional thermal advection is weaker. The daily forcing also impacts the variation of the thermocline through a changing mixed layer depth so that the temperature in the simulation with the daily forcing is warmer around the thermocline.

Current affiliation: Institute of Hydrological Sciences, National Central University, Junli, Taiwan

Corresponding author address: Dr. Chung-Hsiung Sui, Institute of Hydrological Sciences, National Central University, 300, Junda Rd., Junli City, Taoyan, 320 Taiwan. Email: sui@cc.ncu.edu.tw

Save