Post-Eemian Glacial Inception. Part I: The Impact of Summer Seasonal Temperature Bias

G. Vettoretti Department of Physics, University of Toronto, Toronto, Ontario, Canada

Search for other papers by G. Vettoretti in
Current site
Google Scholar
PubMed
Close
and
W. R. Peltier Department of Physics, University of Toronto, Toronto, Ontario, Canada

Search for other papers by W. R. Peltier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Post-Eemian glacial inception [the transition between marine oxygen isotopic stage (MOIS) 5e and MOIS 5d] began approximately 117 000 years before present (117 kyr BP) and led to significant Northern Hemisphere glaciation within the ensuing 5000 yr. Previous sensitivity studies with atmospheric general circulation models (AGCMs) have had difficulty producing glacial nucleation in high northern latitude regions of the globe. A base simulation of this process has been conducted using the Canadian Centre for Climate Modelling and Analysis (CCCma) GCMII with mixed layer slab ocean model constrained so as to ensure that the model reproduces the set of Atmospheric Model Intercomparison Project 2 (AMIP2) modern sea surface temperatures (SSTs) under conditions of modern radiative forcing. This simulation demonstrates that entry into glacial conditions at 116 kyr BP requires only the introduction of post-Eemian orbital insolation and standard preindustrial CO2 concentrations. Two additional sensitivity experiments are also described herein in which the associated modern control climates have modified oceanic heat transports and solar radiation parameterizations. These simulations produce modern Northern Hemisphere sea surface temperatures that are either cold biased or warm biased with respect to the AMIP2 SSTs. Three modern control and three post-Eemian simulations are therefore employed to investigate the sensitivity of the onset of large-scale glaciation at high northern latitudes to the summer seasonal temperature bias in the model. Also discussed are the elements of the hydrological cycle at 116 kyr BP in order to more precisely isolate the primary causes of the onset of perennial snow cover. In particular, one novel feature is described that is characteristic of the two post-Eemian simulations that do initiate glaciation, namely, the absence of perennial snow cover in the Alaskan region, a result that is in accord with geological evidence.

Corresponding author address: Dr. W. R. Peltier, Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada. Email: peltier@atmosp.physics.utoronto.ca

Abstract

Post-Eemian glacial inception [the transition between marine oxygen isotopic stage (MOIS) 5e and MOIS 5d] began approximately 117 000 years before present (117 kyr BP) and led to significant Northern Hemisphere glaciation within the ensuing 5000 yr. Previous sensitivity studies with atmospheric general circulation models (AGCMs) have had difficulty producing glacial nucleation in high northern latitude regions of the globe. A base simulation of this process has been conducted using the Canadian Centre for Climate Modelling and Analysis (CCCma) GCMII with mixed layer slab ocean model constrained so as to ensure that the model reproduces the set of Atmospheric Model Intercomparison Project 2 (AMIP2) modern sea surface temperatures (SSTs) under conditions of modern radiative forcing. This simulation demonstrates that entry into glacial conditions at 116 kyr BP requires only the introduction of post-Eemian orbital insolation and standard preindustrial CO2 concentrations. Two additional sensitivity experiments are also described herein in which the associated modern control climates have modified oceanic heat transports and solar radiation parameterizations. These simulations produce modern Northern Hemisphere sea surface temperatures that are either cold biased or warm biased with respect to the AMIP2 SSTs. Three modern control and three post-Eemian simulations are therefore employed to investigate the sensitivity of the onset of large-scale glaciation at high northern latitudes to the summer seasonal temperature bias in the model. Also discussed are the elements of the hydrological cycle at 116 kyr BP in order to more precisely isolate the primary causes of the onset of perennial snow cover. In particular, one novel feature is described that is characteristic of the two post-Eemian simulations that do initiate glaciation, namely, the absence of perennial snow cover in the Alaskan region, a result that is in accord with geological evidence.

Corresponding author address: Dr. W. R. Peltier, Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada. Email: peltier@atmosp.physics.utoronto.ca

Save
  • Alexander, R. C., and R. L. Mobley, 1976: Monthly average sea surface temperatures and ice pack limits on a 1° global grid. Mon. Wea. Rev., 104 , 143148.

    • Search Google Scholar
    • Export Citation
  • Alley, R. B., and Coauthors. 1993: Abrupt accumulation increase at the Younger Dryas termination in the GISP2 ice core. Nature, 362 , 527529.

    • Search Google Scholar
    • Export Citation
  • Andrews, J. T., and M. A. W. Mahaffy, 1976: Growth rate of the Laurentide ice sheet and sea level lowering. Quat. Res., 6 , 167183.

  • Andrews, J. T., A. Aksu, M. Kelly, R. G. H. Miller, W. N. Mode, and P. Mudie, 1985: Land/ocean correlations during the last interglacial/glacial transition, Baffin Bay, northwest North Atlantic: A review. Quat. Sci. Rev., 4 , 333355.

    • Search Google Scholar
    • Export Citation
  • Andrews, J. T., G. H. Miller, J-S. Vincent, and W. W. Shilts, 1986: Quaternary correlations in Arctic Canada. Quat. Sci. Rev., 5 , 243250.

    • Search Google Scholar
    • Export Citation
  • Barnola, J. M., D. Raynaud, Y. S. Korotkevich, and C. Lorius, 1987: Vostok ice core provides 160,000-year record of atmospheric CO2. Nature, 329 , 408418.

    • Search Google Scholar
    • Export Citation
  • Berger, A., 1978: Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci., 35 , 23622367.

  • Braithwaite, R. J., 1995: Positive-degree-day factors for ablation on the Greenland ice-sheet studied by energy-balance modeling. J. Glaciol., 41 , 153160.

    • Search Google Scholar
    • Export Citation
  • Chappell, J., and N. J. Shackleton, 1986: Oxygen isotopes and sea level. Nature, 324 , 137140.

  • Clark, P. U., and Coauthors. 1993: Initiation and development of the Laurentide and Cordilleran ice sheets following the last interglaciation. Quat. Sci. Rev., 12 , 79114.

    • Search Google Scholar
    • Export Citation
  • Cuffey, K. M., and S. J. Marshall, 2000: Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet. Nature, 404 , 591594.

    • Search Google Scholar
    • Export Citation
  • de Noblet, N. I., I. C. Prentice, S. Joussaume, D. Texier, A. Botta., and A. Haxeltine, 1996: Possible role of atmosphere–biosphere interaction in triggering the last glaciation. Geophys. Res. Lett., 23 , 31913194.

    • Search Google Scholar
    • Export Citation
  • Dong, B., and P. J. Valdes, 1995: Sensitivity studies of Northern Hemisphere glaciation using an atmospheric general circulation model. J. Climate, 8 , 24712496.

    • Search Google Scholar
    • Export Citation
  • Fiorino, M., cited 1996: SST and sea ice concentration observations for the AMIP II boundary conditions. [Available online from http://www-pcmdi.llnl.gov/amip/AMIP2EXPDSN/BCS_OBS/amip2_bcs.htm.].

    • Search Google Scholar
    • Export Citation
  • Fischer, H., M. Wahlen, J. Smith, D. Mastroianni, and B. Deck, 1999: Ice core records of atmospheric CO2 around the last three glacial terminations. Science, 283 , 17121714.

    • Search Google Scholar
    • Export Citation
  • Flato, G. M., G. J. Boer, W. G. Lee, N. A. McFarlane, D. Ramsden, M. C. Reader, and A. J. Weaver, 2000: The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate. Climate Dyn., 16 , 451467.

    • Search Google Scholar
    • Export Citation
  • Foster, D. J., and R. D. Davy, 1988: Global snow depth climatology. Tech. Note USAFETAC/TN-88/006, USAF Environmental Technical Application Center, Scott Air Force Base, Illinois, 48 pp.

    • Search Google Scholar
    • Export Citation
  • Fouquart, Y., and B. Bonnel, 1980: Computation of solar heating of the earth's atmosphere: A new parameterization. Beitr. Phys. Atmos., 53 , 3562.

    • Search Google Scholar
    • Export Citation
  • Gallimore, R. G., and J. E. Kutzbach, 1996: Role of orbitally induced changes in tundra area in the onset of glaciation. Nature, 381 , 503505.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., and Coauthors. 1995: Cloud-radiative effects on implied oceanic energy transports as simulated by atmospheric general circulation models. Geophys. Res. Lett., 22 , 791794.

    • Search Google Scholar
    • Export Citation
  • GRIP Project Members, 1993: Climate instability during the last interglacial period recorded in the GRIP ice core. Nature, 364 , 203207.

    • Search Google Scholar
    • Export Citation
  • Hall, N. M. J., and P. J. Valdes, 1997: A GCM simulation of the climate 6000 years ago. J. Climate, 10 , 317.

  • Hansen, J., A. Lacis, D. Rind, and G. Russell, 1984: Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate Sensitivity, Geophys. Monogr., No. 29, Amer. Geophys. Union, 130–163.

    • Search Google Scholar
    • Export Citation
  • Hays, J. D., J. Imbrie, and N. J. Shackleton, 1976: Variations in the earth's orbit: Pacemaker of the ice ages. Science, 194 , 11211132.

    • Search Google Scholar
    • Export Citation
  • Huybrechts, P., and S. T'Siobbel, 1995: Thermomechanical modelling of Northern Hemisphere ice-sheets with a two-level mass balance parameterization. Ann. Glaciol., 21 , 111117.

    • Search Google Scholar
    • Export Citation
  • Hyde, W. T., and W. R. Peltier, 1987: Sensitivity experiments with a model of the ice age cycle: The response to Milankovitch forcing. J. Atmos. Sci., 44 , 13511374.

    • Search Google Scholar
    • Export Citation
  • Imbrie, J., and Coauthors. 1984: The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. Milankovitch and Climate, A. Berger et al., Eds., D. Reidel, 269–305.

    • Search Google Scholar
    • Export Citation
  • Joussaume, S., and Coauthors. 1999: Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate Modelling Intercomparison Project (PMIP). Geophys. Res. Lett., 26 , 859862.

    • Search Google Scholar
    • Export Citation
  • Jouzel, J., C. Lorius, J. R. Petit, C. Genthon, N. I. Barkov, V. M. Kotlyakov, and V. M. Petrov, 1987: Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160,000 years). Nature, 329 , 403408.

    • Search Google Scholar
    • Export Citation
  • Kageyama, M., F. D'Andrea, G. Ramstein, P. J. Valdes, and R. Vautard, 1999: Weather regimes in past climate atmospheric general circulation model simulations. Climate Dyn., 15 , 773793.

    • Search Google Scholar
    • Export Citation
  • Karabanov, E. B., A. A. Prokopenko, D. F. Williams, and S. M. Colman, 1998: Evidence from Lake Baikal for Siberian glaciation during oxygen–isotope substage 5d. Quat. Res., 50 , 4655.

    • Search Google Scholar
    • Export Citation
  • Lambert, S. J., and G. J. Boer, 2001: CMIP1: Evaluation and intercomparison of coupled climate models. Climate Dyn., 17 , 83106.

  • Laprise, R., and C. Girard, 1990: A spectral general circulation model using a piecewise-constant finite-element representation on a hybrid vertical coordinate system. J. Climate, 3 , 3252.

    • Search Google Scholar
    • Export Citation
  • Laskar, J., 1988: Secular evolution of the solar system over 10 million years. Astron. Astrophys, 198 , 341362.

  • Laskar, J., F. Joutel, and F. Boudin, 1993: Orbital, precessional, and insolation quantities for the earth from −20 Myr to +10 Myr. Astron. Astrophys., 270 , 522533.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and C. G. Willmott, 1990: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10 , 111127.

    • Search Google Scholar
    • Export Citation
  • Marshall, S. J., and G. K. C. Clark, 1999: Ice sheet inception: Subgrid hypsometric parameterization of mass balance in an ice sheet model. Climate Dyn., 15 , 533550.

    • Search Google Scholar
    • Export Citation
  • McCulloch, M. T., A. W. Tudhope, T. M. Esat, G. E. Mortimer, J. Chappell, B. Pillans, A. R. Chivas, and A. Omuraet, 1999: Coral record of equatorial sea-surface temperatures during the penultimate deglaciation at Huon Peninsula. Science, 283 , 202204.

    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., G. J. Boer, J-P. Blanchet, and M. Lazare, 1992: The Canadian Climate Centre second-generation general circulation model and its equilibrium climate. J. Climate, 5 , 10131044.

    • Search Google Scholar
    • Export Citation
  • McManus, J. F., G. C. Bond, W. S. Broecker, S. Johnsen, L. Labeyrie, and S. Higgins, 1994: High-resolution climate records from the North Atlantic during the last interglacial. Nature, 371 , 326329.

    • Search Google Scholar
    • Export Citation
  • Milankovitch, M., 1941: Canon of insolation and the ice-age problem. Königlich Serbische Academie, Special Publ. 132, 484 pp. (English translation in 1969 by Israel Program for Scientific Translations.).

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., 1993: Modelling of paleoclimates: Examples from the recent past. Philos. Trans. Roy. Soc. London, B341 , 267275.

  • Morcrette, J-J., 1991: Radiation and cloud radiative properties in the ECMWF operational weather forecast model. J. Geophys. Res., 96 , 91219132.

    • Search Google Scholar
    • Export Citation
  • Muhs, D. R., G. L. Kennedy, and T. K. Rockwell, 1994: Uranium-series ages of marine terrace corals from the Pacific coast of North America and implications for last-interglacial sea level history. Quat. Res., 42 , 7287.

    • Search Google Scholar
    • Export Citation
  • North, G. R., J. G. Mengel, and D. A. Short, 1983: Simple energy balance model resolving the seasons and continents: Application to the astronomical theory of the Ice Ages. J. Geophys. Res., 88 , 65766586.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., 1994: Ice age paleotopograpy. Science, 265 , 195201.

  • Peltier, W. R., 1998: “Implicit Ice” in the global theory of glacial isostatic adjustment. Geophys. Res. Lett., 25 , 39553958.

  • Phillipps, P. J., and I. M. Held, 1994: The response to orbital perturbations in an atmospheric model coupled to a slab ocean. J. Climate, 7 , 767782.

    • Search Google Scholar
    • Export Citation
  • Pollard, D., and S. L. Thompson, 1997: Driving a high-resolution dynamic ice-sheet model with GCM climate: Ice-sheet initiation at 116,000 BP. Ann. Glaciol., 25 , 296304.

    • Search Google Scholar
    • Export Citation
  • Quinn, T. R., S. Tremaine, and M. Duncan, 1991: A three million year integration of the earth's orbit. Astro. J., 101 , 22872305.

  • Rind, D., D. Peteet, and G. Kukla, 1989: Can Milankovitch orbital variations initiate the growth of ice sheets in a general circulation model? J. Geophys. Res., 94 , 1285112871.

    • Search Google Scholar
    • Export Citation
  • Rohling, E. J., M. Fenton, F. J. Jorissen, P. Bertrand, G. Ganssen, and J. P. Caulet, 1998: Magnitudes of sea-level lowstands of the past 500,000 years. Nature, 394 , 162165.

    • Search Google Scholar
    • Export Citation
  • Rostami, K., W. R. Peltier, and A. Mangini, 2000: Quaternary marine terraces, sea-level changes and uplift history of Patagonia, Argentina: Comparisons with predictions of the ICE-4G (VM2) model of the global process of glacial isostatic adjustment. Quat. Sci. Rev., 19 , 14951525.

    • Search Google Scholar
    • Export Citation
  • Royer, J. F., M. Deque, and P. Pestiaux, 1983: Orbital forcing of the inception of the Laurentide ice sheet. Nature, 304 , 4346.

  • Ruddiman, W. F., and A. McIntyre, 1979: Warmth of the sub-polar North Atlantic Ocean during Northern Hemisphere ice sheet growth. Science, 204 , 173175.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., and M. Y. Verbitsky, 1996: Simulation of glacial onset with a coupled Atmospheric General Circulation/Mixed-Layer Ocean-Ice-Sheet/Asthenosphere Model. Paleoclimates Data Modell., 2 , 179201.

    • Search Google Scholar
    • Export Citation
  • Shackleton, N. J., 1987: Oxygen isotopes, ice volume and sea level. Quat. Sci. Rev., 6 , 183190.

  • Shea, D. J., K. E. Trenberth, and R. W. Reynolds, 1992: A global monthly sea surface temperature climatology. J. Climate, 5 , 9871001.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and I. M. Held, 1979: The sensitivity of an energy balance model to variations in the orbital parameters. J. Geophys. Res., 84 , 48254836.

    • Search Google Scholar
    • Export Citation
  • Syktus, J., H. Gordon, and J. Chappell, 1994: Sensitivity of a coupled atmosphere–dynamic upper ocean GCM to variations of CO2, solar constant, and orbital forcing. Geophys. Res. Lett., 21 , 15991602.

    • Search Google Scholar
    • Export Citation
  • Tarasov, L., and W. R. Peltier, 1997: Termination of the 100 kya ice age cycle. J. Geophys. Res., 102 , 2166521693.

  • Tarasov, L., and W. R. Peltier, 1999: The impact of thermomechanical ice-sheet coupling on a model of the 100 kyr ice-age cycle. J. Geophys. Res., 104 , 95179545.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and A. Solomon, 1994: The global heat balance: Heat transports in the atmosphere and ocean. Climate Dyn., 10 , 107134.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S. J., 1999: The role of the coupled Arctic sea ice–atmosphere system to orbital forcing and ice motion at 6 kyr and 115 kyr BP. J. Climate, 12 , 873896.

    • Search Google Scholar
    • Export Citation
  • Verbitsky, M. Y., and R. J. Oglesby, 1992: The effect of atmospheric carbon dioxide concentration on the continental glaciation of the Northern Hemisphere. J. Geophys. Res., 97 , 58955909.

    • Search Google Scholar
    • Export Citation
  • Vettoretti, G., and W. R. Peltier, 2003: Post-Eemian glacial inception. Part II: Elements of a cryospheric moisture pump. J. Climate, 16 , 912927.

    • Search Google Scholar
    • Export Citation
  • Vettoretti, G., W. R. Peltier, and N. A. McFarlane, 1998: Simulations of mid-Holocene climate using an atmospheric general circulation model. J. Climate, 11 , 26072627.

    • Search Google Scholar
    • Export Citation
  • Vettoretti, G., W. R. Peltier, and N. A. McFarlane, 2000a: The simulated response of the climate system to soil moisture perturbations under paleoclimatic boundary conditions at 6000 years before present. Can. J. Earth Sci., 37 , 635660.

    • Search Google Scholar
    • Export Citation
  • Vettoretti, G., W. R. Peltier, and N. A. McFarlane, 2000b: Global water balance and atmospheric water vapour transport at Last Glacial Maximum: Climate simulations with the CCCma atmospheric general circulation model. Can. J. Earth Sci., 37 , 695723.

    • Search Google Scholar
    • Export Citation
  • Vincent, J-S., and V. K. Prest, 1987: The early Wisconsin history of the Laurentide ice sheet. Geogr. Phys. Quat., 41 , 199213.

  • Weaver, A. J., and T. M. C. Hughes, 1996: On the incompatibility of ocean and atmosphere models and the need for flux adjustments. Climate Dyn., 12 , 141170.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 322 69 13
PDF Downloads 130 32 5