• André, J. C., , J. P. Goutorbe, , and A. Perrier, 1986: HAPEX–MOBILHY: A hydrologic atmospheric experiment for the study of water budget and evaporation flux at the climatic scale. Bull. Amer. Meteor. Soc., 67 , 138144.

    • Search Google Scholar
    • Export Citation
  • Avissar, R., , and R. A. Pielke, 1989: A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology. Mon. Wea. Rev., 117 , 21132136.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., , and F. C. Bosveld, 1997: Cabauw data for the validation of land surface parameterization schemes. J. Climate, 10 , 11721193.

    • Search Google Scholar
    • Export Citation
  • Beven, K. J., , and M. J. Kirby, 1979: A physically-based variable contributing area model of basin hydrology. Hydrol. Sci. Bull., 24 , 4369.

    • Search Google Scholar
    • Export Citation
  • Blyth, E. M., 2002: Modelling soil moisture for a grassland and a woodland site in south-east England. Hydrol. Earth Syst. Sci., 6 , 3947.

    • Search Google Scholar
    • Export Citation
  • Boone, A., , and P. Etchevers, 2001: An intercomparison of three snow schemes of varying complexity coupled to the same land-surface model: Local scale evaluation at an alpine site. J. Hydrometeor., 2 , 374394.

    • Search Google Scholar
    • Export Citation
  • Bowling, L. C., and Coauthors, 2002: Simulation of high latitude hydrological processes in the Torne–Kalix basin: PILPS Phase-2(e), 1: Experiment description and summary intercomparisons. Global Planet. Change, 38 , 130.

    • Search Google Scholar
    • Export Citation
  • Champeaux, J. L., , D. Acros, , E. Bazile, , D. Giard, , J. P. Gourtorbe, , F. Habets, , J. Noilhan, , and J. L. Roujean, 2000: AVHRR-derived vegetation mapping over western Europe for use in numerical weather prediction models. Int. J. Remote Sens., 21 , 11831199.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , Z. Janic, , and K. Mitchell, 1997: Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Bound.-Layer Meteor., 85 , 391421.

    • Search Google Scholar
    • Export Citation
  • Cosby, B. J., , G. M. Hornberger, , R. B. Clapp, , and T. R. Ginn, 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20 , 682690.

    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., , and J. Polcher, 1998: Modeling root water uptake in a complex land surface scheme coupled to a GCM. Hydrol. Earth. Syst. Sci., 2 , 239356.

    • Search Google Scholar
    • Export Citation
  • Desborough, C. E., 1997: The impact of root weighting on the response of transpiration to moisture stress in a land surface scheme. Mon. Wea. Rev., 125 , 19201930.

    • Search Google Scholar
    • Export Citation
  • Desborough, C. E., 1999: Surface energy balance complexity in GCM land surface models. Climate Dyn., 15 , 389403.

  • Desborough, C. E., , A. J. Pitman, , and P. Irannejad, 1996: Analysis of the relationship between bare soil evaporation and soil moisture simulated by 13 land surface schemes for a simple non-vegetated site. Global Planet. Change, 13 , 4756.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., , A. J. Dolman, , and N. Sato, 1999: The Global Soil Wetness Project: A pilot project for global land surface modeling and validation. Bull. Amer. Meteor. Soc., 80 , 851878.

    • Search Google Scholar
    • Export Citation
  • Dolman, A. J., , and D. Gregory, 1992: The parameterization of rainfall interception in GCMs. Quart. J. Roy. Meteor. Soc., 118 , 455467.

    • Search Google Scholar
    • Export Citation
  • Dolman, A. J., , and E. M. Blyth, 1997: Patch scale aggregation of heterogeneous land surface cover for mesoscale meteorological models. J. Hydrol., 190 , 252268.

    • Search Google Scholar
    • Export Citation
  • Dolman, A. J., , and R. Dickinson, 1997: Land surface parameterizations/soil vegetation–atmosphere transfer schemes workshop—Conclusions and working group reports. GEWEX Tech. Rep., IGPO Series Pub. No. 31, La Jolla, CA, 77 pp.

    • Search Google Scholar
    • Export Citation
  • Dümenil, L., , and E. Todoni, 1992: A rainfall-runoff scheme for use in the Hamburg climate model. Adv. Theor. Hydrol., 9 , 129157.

  • Durand, Y., , E. Brun, , L. Mérindol, , G. Guyomarc'h, , B. Lesaffre, , and E. Martin, 1993: A meteorological estimation of relevant parameters for snow schemes used with atmospheric models. Ann. Glaciol., 18 , 6571.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., , and P. Eagleson, 1989: Land surface hydrology parameterization for atmospheric general circulation models including subgrid scale spatial variability. J. Climate, 2 , 816832.

    • Search Google Scholar
    • Export Citation
  • Entin, J. K., , A. Robock, , K. Y. Vinnikov, , V. Zabelin, , S. Liu, , A. Namkhai, , and T. Adyasuren, 1999: Evaluation of Global Soil Wetness Project soil moisture simulations. J. Meteor. Soc. Japan, 77 , 183198.

    • Search Google Scholar
    • Export Citation
  • Etchevers, P., 2000: Modèlisation du cycle continental de l'eau à l'échelle régional: Impact de la modélization de l'enneigement sur l'hydrologie du bassin versant du Rhône. (Modeling the continental water cycle at a regional scale: Impact of the snow simulation on the hydrology of the Rhone basin). Ph.D. thesis, Université Paul Sabatier, 361 pp.

    • Search Google Scholar
    • Export Citation
  • Etchevers, P., , C. Golaz, , and F. Habets, 2001: Simulation of the water budget and the river flows of the Rhône basin from 1981 to 1994. J. Hydrol., 244 , 6085.

    • Search Google Scholar
    • Export Citation
  • Flamiglietti, J. S., , and E. F. Wood, 1994: Multiscale modeling of spatially variable water and energy balance processes. Water Resour. Res., 30 , 30613078.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., , J. C. Liljegren, , W. J. Shaw, , J. H. Hubbe, , and J. C. Doran, 1997: Influence of subgrid variability on surface hydrology. J. Climate, 10 , 31573166.

    • Search Google Scholar
    • Export Citation
  • Giordano, A., Ed.,. 1992: CORINE soil erosion risk and important land resources of the European community. EUR Tech. Rep. 13233 EN, 97 pp.

    • Search Google Scholar
    • Export Citation
  • Golaz-Cavazzi, C., , P. Etchevers, , F. Habets, , E. Ledoux, , and J. Noilhan, 2001: Comparison of two hydrological simulations of the Rhone basin. Phys. Chem. Earth, 26B , 461466.

    • Search Google Scholar
    • Export Citation
  • Gusev, Ye M., , and O. N. Nasonova, 1998: The land surface parameterization scheme SWAP: Description and partial validation. Global Planet. Change, 19 , 6386.

    • Search Google Scholar
    • Export Citation
  • Habets, F., , R. Etchevers, , C. Golaz, , E. Leblois, , E. Ledoux, , E. Martin, , J. Noilhan, , and C. Ottlé, 1999: Simulation of the water budget and the river flows of the Rhone basin. J. Geophys. Res., 104 , 3114531172.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., , and A. Pitman, 1992: Land-surface schemes for future climate models: Specification, aggregation, and heterogeneity. J. Geophys. Res., 97 , 26872696.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., , Z-L. Yang, , and R. E. Dickinson, 1993: The project for intercomparison of land surface parameterization schemes. Bull. Amer. Meteor. Soc., 74 , 13351349.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., , A. Pitman, , P. Love, , P. Irannejad, , and T. Chen, 1995: The project for intercomparison of land surface parameterization schemes (PILPS): Phases 2 and 3. Bull. Amer. Meteor. Soc., 76 , 489504.

    • Search Google Scholar
    • Export Citation
  • King, D., , C. Lebas, , M. Jamagne, , R. Hardy, , and J. Draoussin, 1995: Base de données géographiques des sols de France à l'échelle 1/1000000 (Geographical Soil Database for France at a scale of 1/1000000). Institut National de Recherches Agronomiques (INRA) Tech. Rep., Orleans, France, 100 pp.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , and M. J. Suarez, 1992: Modeling of the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res., 97 , 26972715.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , and P. C. D. Milly, 1997: The interplay between transpiration and runoff formulations in land surface schemes used with atmospheric models. J. Climate, 10 , 15781591.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , M. J. Suarez, , A. Ducharne, , M. Stieglitz, , and P. Kumar, 2000: a catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105 , 2480924822.

    • Search Google Scholar
    • Export Citation
  • Ledoux, E., , G. Girard, , G. de Marsilly, , and J. Deschenes, 1989: Spatially distributed modeling: Conceptual approach, coupling surface water and ground water. Unsaturated Flow Hydrologic Modeling-theory and Practice, X. Morel-Seytoux, Ed., NATO, ASI Series C, Kluwer Academic, 435–454.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , and Z. Xie, 2001: A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models. Adv. Water. Resour., 24 , 11731193.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , D. Lettenmaier, , E. F. Wood, , and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99 , 1441514428.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , E. F. Wood, , and D. Lettenmaier, 1996: One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J. Geophys. Res., 101 , 2140321422.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J-F., , and J. Noilhan, 1996: Inclusion of gravitational drainage in a land surface scheme based on the force-restore method. J. Appl. Meteor., 35 , 987992.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J-F., and Coauthors, 1996: Analysis of transpiration results from the RICE and PILPS workshop. Global Planet. Change, 13 , 7388.

    • Search Google Scholar
    • Export Citation
  • Meeson, B. W., and Coauthors, 1995: ISLSCP Initiative I-Global Data Sets for Land-Atmosphere Models, 1987–1988, Vols. 1–5. NASA CD-ROM.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., , and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models, 1, A discussion of principles. J. Hydrol., 10 , 282290.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., and Coauthors, 2002: Simulation of high latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2(e). 2: Comparison of model results with observations. Global Planet. Change, 38 , 3153.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., , and P. Lacarrère, 1995: GCM gridscale evaporation from mesoscale modeling. J. Climate, 8 , 206223.

  • Noilhan, J., , and J-F. Mahfouf, 1996: The ISBA land surface parameterization scheme. Global Planet. Change, 13 , 145159.

  • Nykanen, D. K., , E. Foufoula-Georgiou, , and W. M. Lapenta, 2001: Impact of small-scale rainfall variability on larger-scale spatial organization of land–atmosphere fluxes. J. Hydrometeor., 2 , 105121.

    • Search Google Scholar
    • Export Citation
  • Polcher, J., 2001: GLASS implementation underway. GEWEX News, 10 , 9.

  • Polcher, J., and Coauthors, 2000: GLASS: Global Land–Atmosphere System Study. GEWEX News, 10 , 35.

  • Sellers, P. J., , F. G. Hall, , G. Asrar, , D. E. Strebel, , and R. E. Murphy, 1988: The first ISLSCP Field Experiment (FIFE). Bull. Amer. Meteor. Soc., 69 , 2227.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1995: An overview of the ISLSCP Initiative I Global Data Sets. Vols. 1–5, NASA CD-ROM.

  • Sellers, P. J., and Coauthors, 1997: BOREAS in 1997: Experiment overview, scientific results, and future directions. J. Geophys. Res., 102 , 2873128769.

    • Search Google Scholar
    • Export Citation
  • Seth, A., , F. Giorgi, , and R. E. Dickinson, 1994: Simulating fluxes from heterogeneous land surfaces: Explicit subgrid method employing the biosphere–atmosphere transfer scheme (BATS). J. Geophys. Res., 99 , 651677.

    • Search Google Scholar
    • Export Citation
  • Shmakin, A. B., 1998: The updated version of SPONSOR land surface scheme. PILPS-influenced improvements. Global Planet. Change, 19 , 4962.

    • Search Google Scholar
    • Export Citation
  • Slater, A. G., and Coauthors, 2001: The representation of snow in land surface schemes: Results from PILPS 2(d). J. Hydrometeor., 2 , 725.

    • Search Google Scholar
    • Export Citation
  • Tanaka, K., , E. Nakakita, , and S. Ikebuchi, 1998: Land-surface parameterization in the Lake Biwa Project. Annu. J. Hydraul. Eng., 42 , 7984.

    • Search Google Scholar
    • Export Citation
  • van den Hurk, B., , and P. Viterbo, 2002: The Torne–Kalix PILPS-2e experiment as a test bed for modifications to the ECMWF land surface scheme. Global Planet. Change, 38 , 165173.

    • Search Google Scholar
    • Export Citation
  • van den Hurk, B., , P. Viterbo, , A. C. M. Beljaars, , and A. K. Betts, 2000: Offline validation of the ERA40 surface scheme. ECMWF Tech. Memo 295, 43 pp.

    • Search Google Scholar
    • Export Citation
  • Van Genuchten, M. T., 1980: A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer., 44 , 892898.

    • Search Google Scholar
    • Export Citation
  • Verseghy, D., 2000: The Canadian Land Surface Scheme (CLASS): Its history and future. Atmos.–Ocean, 38 , 13.

  • Violette, S., , E. Ledoux, , P. Goblet, , and J. P. Carbonnel, 1997: Hydrologic and thermal modeling of an active volcano: The Piton de la Fournaise, Reunion. J. Hydrol., 191 , 3763.

    • Search Google Scholar
    • Export Citation
  • Wang, G., , and E. A. B. Eltahir, 2000: Modeling the biosphere–atmosphere system. The impact of the subgrid variability in rainfall interception. J. Climate, 13 , 28872899.

    • Search Google Scholar
    • Export Citation
  • Wetzel, P. J., , and J. T. Chang, 1988: Evapotranspiration from nonuniform surfaces: A first approach for short-term numerical weather prediction. Mon. Wea. Rev., 116 , 600621.

    • Search Google Scholar
    • Export Citation
  • Wetzel, P. J., and Coauthors, 1996: Modeling vadose zone liquid water fluxes: Infiltration, runoff, drainage, interflow. Global Planet. Change, 13 , 5771.

    • Search Google Scholar
    • Export Citation
  • Wood, E. F., , D. Lettenmaier, , and V. Zartarian, 1992: A land-surface hydrology parameterization with subgrid variability for general circulation models. J. Geophys. Res., 97 , 27172728.

    • Search Google Scholar
    • Export Citation
  • Wood, E. F., and Coauthors, 1998: The Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS) Phase-2c Red-Arkansas River Basin experiment: 3. Experiment description and summary intercomparisons. Global Planet. Change, 19 , 115135.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., , P. J. Sellers, , J. L. Kinter, , and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4 , 345364.

    • Search Google Scholar
    • Export Citation
  • Yang, Z-L., , and G-Y. Niu, 2002: The versatile integrator of surface and atmospheric processes (VISA) Part 1: Model description. Global Planet. Change, 38 , 175189.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., , A. Henderson-Sellers, , A. J. Pitman, , J. L. McGregor, , C. E. Desborough, , and J. J. Katzfey, 2001: Limited-area model sensitivity to the complexity of representation of the land surface energy balance. J. Climate, 14 , 39653986.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 183 183 132
PDF Downloads 43 43 1

The Rhône-Aggregation Land Surface Scheme Intercomparison Project: An Overview

View More View Less
  • a Centre National de Recherche Météorologique/Météo-France, Toulouse, France
  • | b Centre for Ecology and Hydrology, Wallingford, United Kingdom
  • | c Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland
  • | d Institute of Water Problems, Moscow, Russia
  • | e Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington
  • | f Norwegian Water Resources and Energy Directorate (NVE), Oslo, Norway
  • | g NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | h NOAA/NCEP/Environmental Modeling Center, Camp Springs, Maryland
  • | i Department of Hydrology and Water Resources, The University of Arizona, Tucson, Arizona
  • | j Macquarie University, North Ryde, Australia
  • | k Laboratoire de Météorologie Dynamique, Paris, France
  • | l Institute of Geography, Russian Academy of Sciences, Moscow, Russia
  • | m Water Resources Research Center, DPRI, Kyoto University, Gokasho, Japan
  • | n Royal Netherlands Meteorological Institute, De Bilt, Netherlands
  • | o Climate Research Branch, Meteorological Service of Canada, Toronto, Ontario, Canada
  • | p European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
  • | q Centres d'Etudes Spatiales de la Biosphère, Toulouse, France
  • | r Goddard Earth Sciences and Technology Center, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | s Department of Geological Sciences, University of Texas at Austin, Austin, Texas
© Get Permissions
Restricted access

Abstract

The Rhône-Aggregation (Rhône-AGG) Land Surface Scheme (LSS) intercomparison project is an initiative within the Global Energy and Water Cycle Experiment (GEWEX)/Global Land–Atmosphere System Study (GLASS) panel of the World Climate Research Programme (WCRP). It is a intermediate step leading up to the next phase of the Global Soil Wetness Project (GSWP) (Phase 2), for which there will be a broader investigation of the aggregation between global scales (GSWP-1) and the river scale. This project makes use of the Rhône modeling system, which was developed in recent years by the French research community in order to study the continental water cycle on a regional scale.

The main goals of this study are to investigate how 15 LSSs simulate the water balance for several annual cycles compared to data from a dense observation network consisting of daily discharge from over 145 gauges and daily snow depth from 24 sites, and to examine the impact of changing the spatial scale on the simulations. The overall evapotranspiration, runoff, and monthly change in water storage are similarly simulated by the LSSs, however, the differing partitioning among the fluxes results in very different river discharges and soil moisture equilibrium states. Subgrid runoff is especially important for discharge at the daily timescale and for smaller-scale basins. Also, models using an explicit treatment of the snowpack compared better with the observations than simpler composite schemes.

Results from a series of scaling experiments are examined for which the spatial resolution of the computational grid is decreased to be consistent with large-scale atmospheric models. The impact of upscaling on the domain-averaged hydrological components is similar among most LSSs, with increased evaporation of water intercepted by the canopy and a decrease in surface runoff representing the most consistent inter-LSS responses. A significant finding is that the snow water equivalent is greatly reduced by upscaling in all LSSs but one that explicitly accounts for subgrid-scale orography effects on the atmospheric forcing.

Corresponding author address: Aaron A. Boone, Centres d'Etudes Spatiales de la Biosphère, 18, avenue Edouard Belin, Room 214, 31401 Toulouse, France. Email: aaron.boone@free.fr

Abstract

The Rhône-Aggregation (Rhône-AGG) Land Surface Scheme (LSS) intercomparison project is an initiative within the Global Energy and Water Cycle Experiment (GEWEX)/Global Land–Atmosphere System Study (GLASS) panel of the World Climate Research Programme (WCRP). It is a intermediate step leading up to the next phase of the Global Soil Wetness Project (GSWP) (Phase 2), for which there will be a broader investigation of the aggregation between global scales (GSWP-1) and the river scale. This project makes use of the Rhône modeling system, which was developed in recent years by the French research community in order to study the continental water cycle on a regional scale.

The main goals of this study are to investigate how 15 LSSs simulate the water balance for several annual cycles compared to data from a dense observation network consisting of daily discharge from over 145 gauges and daily snow depth from 24 sites, and to examine the impact of changing the spatial scale on the simulations. The overall evapotranspiration, runoff, and monthly change in water storage are similarly simulated by the LSSs, however, the differing partitioning among the fluxes results in very different river discharges and soil moisture equilibrium states. Subgrid runoff is especially important for discharge at the daily timescale and for smaller-scale basins. Also, models using an explicit treatment of the snowpack compared better with the observations than simpler composite schemes.

Results from a series of scaling experiments are examined for which the spatial resolution of the computational grid is decreased to be consistent with large-scale atmospheric models. The impact of upscaling on the domain-averaged hydrological components is similar among most LSSs, with increased evaporation of water intercepted by the canopy and a decrease in surface runoff representing the most consistent inter-LSS responses. A significant finding is that the snow water equivalent is greatly reduced by upscaling in all LSSs but one that explicitly accounts for subgrid-scale orography effects on the atmospheric forcing.

Corresponding author address: Aaron A. Boone, Centres d'Etudes Spatiales de la Biosphère, 18, avenue Edouard Belin, Room 214, 31401 Toulouse, France. Email: aaron.boone@free.fr

Save