Characterization of Millennial-Scale Climate Variability

Gerard H. Roe Quaternary Research Center, and Department of Earth and Space Sciences, University of Washington, Seattle, Washington

Search for other papers by Gerard H. Roe in
Current site
Google Scholar
PubMed
Close
and
Eric J. Steig Quaternary Research Center, and Department of Earth and Space Sciences, University of Washington, Seattle, Washington

Search for other papers by Eric J. Steig in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The oxygen isotope time series from ice cores in central Greenland [the Greenland Ice Sheet Project 2 (GISP2) and the Greenland Ice Core Project (GRIP)] and West Antarctica (Byrd) provide a basis for evaluating the behavior of the climate system on millennial time scales. These time series have been invoked as evidence for mechanisms such as an interhemispheric climate seesaw or a stochastic resonance process. Statistical analyses are used to evaluate the extent to which these mechanisms characterize the observed time series. Simple models in which the Antarctic record reflects the Greenland record or its integral are statistically superior to a model in which the two time series are unrelated. However, these statistics depend primarily on the large events in the earlier parts of the record (between 80 and 50 kyr BP). For the shorter, millennial-scale (Dansgaard–Oeschger) events between 50 and 20 kyr BP, a first-order autoregressive [AR(1)] stochastic climate model with a physical time scale of τ = 600 ± 300 yr is a self-consistent explanation for the Antarctic record. For Greenland, AR(1) with τ = 400 ± 200 yr, plus a simple threshold rule, provides a statistically comparable characterization to stochastic resonance (though it cannot account for the strong 1500-yr spectral peak). The similarity of the physical time scales underlying the millennial-scale variability provides sufficient explanation for the similar appearance of the Greenland and Antarctic records during the 50–20-kyr BP interval. However, it cannot be ruled out that improved cross dating for these records may strengthen the case for an interhemispheric linkage on these shorter time scales. Additionally, the characteristic time scales for the records are significantly shorter during the most recent 10 kyr. Overall, these results suggest that millennial-scale variability is determined largely by regional processes that change significantly between glacial and interglacial climate regimes, with little influence between the Southern and Northern Hemispheres except during those largest events that involve major reorganizations of the ocean thermohaline circulation.

Corresponding author address: Dr. Gerard H. Roe, Dept. of Earth and Space Sciences, University of Washington, Box 351360, Seattle, WA 98195. Email: Gerard@ess.washington.edu

Abstract

The oxygen isotope time series from ice cores in central Greenland [the Greenland Ice Sheet Project 2 (GISP2) and the Greenland Ice Core Project (GRIP)] and West Antarctica (Byrd) provide a basis for evaluating the behavior of the climate system on millennial time scales. These time series have been invoked as evidence for mechanisms such as an interhemispheric climate seesaw or a stochastic resonance process. Statistical analyses are used to evaluate the extent to which these mechanisms characterize the observed time series. Simple models in which the Antarctic record reflects the Greenland record or its integral are statistically superior to a model in which the two time series are unrelated. However, these statistics depend primarily on the large events in the earlier parts of the record (between 80 and 50 kyr BP). For the shorter, millennial-scale (Dansgaard–Oeschger) events between 50 and 20 kyr BP, a first-order autoregressive [AR(1)] stochastic climate model with a physical time scale of τ = 600 ± 300 yr is a self-consistent explanation for the Antarctic record. For Greenland, AR(1) with τ = 400 ± 200 yr, plus a simple threshold rule, provides a statistically comparable characterization to stochastic resonance (though it cannot account for the strong 1500-yr spectral peak). The similarity of the physical time scales underlying the millennial-scale variability provides sufficient explanation for the similar appearance of the Greenland and Antarctic records during the 50–20-kyr BP interval. However, it cannot be ruled out that improved cross dating for these records may strengthen the case for an interhemispheric linkage on these shorter time scales. Additionally, the characteristic time scales for the records are significantly shorter during the most recent 10 kyr. Overall, these results suggest that millennial-scale variability is determined largely by regional processes that change significantly between glacial and interglacial climate regimes, with little influence between the Southern and Northern Hemispheres except during those largest events that involve major reorganizations of the ocean thermohaline circulation.

Corresponding author address: Dr. Gerard H. Roe, Dept. of Earth and Space Sciences, University of Washington, Box 351360, Seattle, WA 98195. Email: Gerard@ess.washington.edu

Save
  • Alley, R. B., S. Anandakrishnan, and P. Jung, 2001a: Stochastic resonance in the North Atlantic. Paleoceanography, 16 , 190198.

  • Alley, R. B., S. Anandakrishnan, P. Jung, and A. Clough, 2001b: Stochastic resonance in the North Atlantic: Further insights. The Oceans and Rapid Climate Change: Past, Present and Future, Geophys. Monogr., No. 126, Amer. Geophys. Union, 57–68.

    • Search Google Scholar
    • Export Citation
  • Alley, R. B., and Coauthors, 1993: Abrupt accumulation increase at the Younger Dryas termination in the GISP2 ice core. Nature, 362 , 527529.

    • Search Google Scholar
    • Export Citation
  • Alley, R. B., and Coauthors, 2002: Abrupt Climate Change: Inevitable Changes. National Academy Press, 230 pp.

  • Battisti, D. S., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J. Atmos. Sci, 45 , 28892919.

    • Search Google Scholar
    • Export Citation
  • Blunier, T., and E. J. Brook, 2001: Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science, 291 , 109112.

    • Search Google Scholar
    • Export Citation
  • Blunier, T., and Coauthors, 1998: Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature, 394 , 739743.

    • Search Google Scholar
    • Export Citation
  • Bond, G. C., and R. Lotti, 1995: Iceberg discharges into the North Atlantic on millennial time scales during the last deglaciation. Science, 267 , 10051010.

    • Search Google Scholar
    • Export Citation
  • Bond, G. C., and Coauthors, 1997: A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial climates. Science, 278 , 12571266.

    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., 1999: Paleoclimatology: Reconstructing Climates of the Quaternary. Academic Press, 613 pp.

  • Broecker, W. S., 1991: The great ocean conveyer. Oceanography, 4 , 7989.

  • Broecker, W. S., 1997: Paleocean circulation during the last deglaciation; a bipolar seesaw? Paleoceanography, 13 , 119121.

  • Broecker, W. S., 2000: Was a change in thermohaline circulation responsible for the Little Ice Age? Proc. Natl. Acad. Sci, 97 , 13391342.

    • Search Google Scholar
    • Export Citation
  • Clark, P. U., R. S. Webb, and L. D. Keigwin, Eds.,. 1999: Mechanisms of Millenial Scale Global Climate Change. Geophys. Monogr., No. 112, Amer. Geophys. Union, 394 pp.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., M. A. Cane, and R. Seager, 2001: An orbitally driven tropical source for abrupt climate change. J. Climate, 14 , 23692375.

    • Search Google Scholar
    • Export Citation
  • Conway, H., G. Catania, C. F. Raymond, A. M. Gades, T. A. Scambos, and H. Englehardt, 2002: Switch of flow direction in an Antarctic ice stream. Nature, 419 , 465467.

    • Search Google Scholar
    • Export Citation
  • Crowley, T. J., 2000: Causes of climate change over the past 1000 years. Science, 289 , 270277.

  • Cuffey, K., G. Clow, R. Alley, M. Stuiver, E. Waddington, and R. Saltus, 1995: Large Arctic temperature change at the Wisconsin-Holocene glacial transition. Science, 270 , 455458.

    • Search Google Scholar
    • Export Citation
  • Dahl-Jensen, D., K. Mosegaard, N. Gundestrup, G. D. Clow, S. J. Johnsen, A. W. Hansen, and N. Balling, 1998: Past temperatures directly from the Greenland ice sheet. Science, 282 , 268271.

    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., S. J. Johnsen, H. B. Clausen, and N. Gundestrup, 1973: Stable isotope glaciology. Medd. Groenl, 197 , 153.

  • Dansgaard, W., and Coauthors, 1993: Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364 , 218220.

    • Search Google Scholar
    • Export Citation
  • Denton, G. H., C. J. Heusser, T. V. Lowell, P. I. Moreno, B. G. Andersen, L. A. Heusser, C. Schluchter, and D. R. Marchant, 1999: Interhemispheric linkage of paleoclimate during the last glaciation. Geogr. Ann, 81A , 107153.

    • Search Google Scholar
    • Export Citation
  • Fahnestock, M. A., T. A. Scambos, R. A. Binschadler, and G. Kvaran, 2000: A millennium of variable ice-flow recorded by the Ross Ice Shelf. J. Glaciol, 46 , 652664.

    • Search Google Scholar
    • Export Citation
  • Ganopolski, A., and S. Rahmstorf, 2001: Rapid changes of glacial climate simulated in a coupled climate model. Nature, 409 , 153158.

  • Gedalof, Z., N. J. Mantua, and D. L. Peterson, 2002: A multi-century perspective of variability in the Pacific Decadal Oscillation: New insights from tree rings and corals. Geophys. Res. Lett.,29, 2204, doi:10.1029/2002GL015824.

    • Search Google Scholar
    • Export Citation
  • Grootes, P. M., M. Stuiver, J. W. C. White, S. Johnsen, and J. Jouzel, 1993: Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366 , 522554.

    • Search Google Scholar
    • Export Citation
  • Hammer, C. U., H. B. Clausen, and C. C. Langway, 1994: Electrical conductivity method (ECM) stratigraphic dating of the Byrd Station ice core, Antarctica. Ann. Glaciol, 20 , 115120.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models. Pt. 1: Theory. Tellus, 28 , 473485.

  • Heinrich, H., 1988: Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quat. Res, 29 , 142152.

    • Search Google Scholar
    • Export Citation
  • Hendy, I. L., and J. P. Kennett, 1999: Latest Quaternary North Pacific surface-water responses imply atmosphere-driven climate instability. Geology, 27 , 291294.

    • Search Google Scholar
    • Export Citation
  • Hinnov, L. A., M. Schulzb, and P. Yiouc, 2002: Interhemispheric space–time attributes of the Dansgaard–Oeschger events between 100 and 0 ka. Quat. Sci. Rev, 21 , 12131228.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., J. W. Hurrell, and T. Xu, 2001: Tropical origins for recent North Atlantic climate change. Science, 292 , 9092.

  • Hormes, A., B. U. Müller, and C. Schlüchter, 2001: The Alps with little ice: Evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. Holocene, 11 , 255265.

    • Search Google Scholar
    • Export Citation
  • Hughen, K. A., J. T. Overpeck, S. J. Lehman, M. Kahsgarian, J. Southon, L. C. Peterson, R. Alley, and D. M. Sigman, 1998: Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature, 391 , 6568.

    • Search Google Scholar
    • Export Citation
  • Huybers, P., 2004: Comments on “coupling of the hemispheres in observations and simulations of glacial climate change” by A. Schmittner, O. A. Senko, and A. J. Weaver. Quat. Sci. Rev, 22 , 659671.

    • Search Google Scholar
    • Export Citation
  • Hyde, W. T., and T. J. Crowley, 2002: Stochastic forcing of Pleistocene ice sheets: Implications for the origin of millennial-scale climate oscillations. Paleoceanography, 17 , 19.119.8.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G. M., and D. G. Watts, 1968: Spectral Analysis and Its Applications. Holden-Day, 523 pp.

  • Jøhannesson, T., C. F. Raymond, and E. D. Waddington, 1989: Time scale for adjustment of glaciers to changes in mass balances. J. Glaciol, 35 , 355369.

    • Search Google Scholar
    • Export Citation
  • Johnsen, S. J., D. Dahl-Jensen, W. Dansgaard, and N. Gundestrup, 1995: Greenland paleotemperatures derived from the GRIP bore hole temperature and ice core isotope profiles. Tellus, 47B , 624629.

    • Search Google Scholar
    • Export Citation
  • Johnsen, S. J., and Coauthors, 2001: Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and North GRIP. J. Quat. Sci, 16 , 299307.

    • Search Google Scholar
    • Export Citation
  • Jouzel, J., and Coauthors, 1997: Validity of the temperature reconstruction from water isotopes in ice cores. J. Geophys. Res, 102 , 2647126487.

    • Search Google Scholar
    • Export Citation
  • Jouzel, J., and Coauthors, 2001: A new 27 ky high resolution East Antarctic climate record. Geophys. Res. Lett, 28 , 31993202.

  • Lang, C., M. Leuenberger, J. Schwander, and S. Johnsen, 1999: 16°C rapid temperature variation in central Greenland 70,000 years ago. Science, 286 , 934937.

    • Search Google Scholar
    • Export Citation
  • MacAyeal, D. R., 1993a: A low-order model of the Heinrich event cycle. Paleoceanography, 8 , 767773.

  • MacAyeal, D. R., 1993b: Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic's Heinrich events. Paleoceanography, 8 , 775784.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1988: Two stable equilibria of a coupled ocean–atmosphere model. J. Climate, 1 , 841866.

  • Mann, M. E., R. S. Bradley, and M. K. Hughes, 1998: Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392 , 779787.

    • Search Google Scholar
    • Export Citation
  • Markgraf, V., 1993: Younger Dryas in southernmost South America: An update. Quat. Sci. Rev, 12 , 351355.

  • Mayewski, P. A., L. D. Meeker, S. Whitlow, M. S. Twickler, M. C. Morrison, R. B. Alley, P. Bloomfield, and K. Taylor, 1993: The atmosphere during the Younger Dryas. Science, 261 , 195197.

    • Search Google Scholar
    • Export Citation
  • Meese, D. A., and Coauthors, 1997: The Greenland Ice Sheet Project 2 depth-age scale: Methods and results. J. Geophys. Res, 102 , 2641126423.

    • Search Google Scholar
    • Export Citation
  • Morgan, V., M. Delmotte, T. van Ommen, J. Jouzel, J. Chappellaz, S. Woon, V. Masson-Delmotte, and D. Raynaud, 2002: Relative timing of deglacial climate events in Antarctica and Greenland. Science, 297 , 18621864.

    • Search Google Scholar
    • Export Citation
  • Mudelsee, M., 2002: TAUEST: A computer program for estimating persistence in unevenly spaced weather/climate time series. Comput. Geosci, 28 , 6972.

    • Search Google Scholar
    • Export Citation
  • Mulvaney, R., R. Rothlisberger, E. W. Wolff, S. Sommer, J. Schwander, M. A. Hutterli, and J. Jouzel, 2000: The transition from the last glacial period in inland and near-coastal Antarctica. Geophys. Res. Lett, 27 , 26732676.

    • Search Google Scholar
    • Export Citation
  • Overpeck, J. T., and Coauthors, 1997: Arctic environmental change of the last four centuries. Science, 278 , 12511256.

  • Paterson, W. S. B., 1994: The Physics of Glaciers. Elsevier, 480 pp.

  • Percival, D. B., J. E. Overland, and H. O. Mofjeld, 2001: Interpretation of North Pacific variability as a short-and long-memory process. J. Climate, 14 , 45454559.

    • Search Google Scholar
    • Export Citation
  • Petit, J. R., and Coauthors, 1999: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399 , 429436.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, 1992: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, 933 pp.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 2003: Timing of abrupt climate change: A precise clock. Geophys. Res. Lett.,30, 1510, doi:10.1029/ 2003GL017115.

  • Sachs, J. P., and S. J. Lehman, 1999: Subtropical North Atlantic temperatures 60,000 to 30,000 years ago. Science, 286 , 756759.

  • Schiller, A., U. Mikolajewicz, and R. Voss, 1997: The stability of the North Atlantic thermohaline circulation in a coupled ocean– atmosphere general circulation model. Climate Dyn, 13 , 325347.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., M. Yoshimori, and A. J. Weaver, 2002: Instability of glacial climate in a model of the ocean–atmosphere–cryosphere system. Science, 295 , 14891493.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., O. A. Saenko, and A. J. Weaver, 2003: Coupling of the hemispheres in observations and simulations of glacial climate change. Quat. Sci. Rev, 22 , 659671.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., and A. Neumaier, 2001: Algorithm 808: ARFIT—A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans. Math. Software, 27 , 5865.

    • Search Google Scholar
    • Export Citation
  • Schulz, M., 2002a: On the 1470-year pacing of Dansgaard–Oeschger warm events. Paleoceanography, 17 , 4.14.9.

  • Schulz, M., 2002b: The tempo of climate change during Dansgaard–Oeschger interstadials and its potential to affect the manifestation of the 1470-year climate cycle. Geophys. Res. Lett.,29, 1002, doi:10.1029/2001GL013277.

    • Search Google Scholar
    • Export Citation
  • Schwarz, G., 1978: Estimating the order of a model. Ann. Stat, 6 , 461464.

  • Seager, R., D. S. Battisti, J. Yin, N. Naik, N. Gordon, A. C. Clement, and M. Cane, 2002: Is the Gulf Stream responsible for Europe's mild winters? Quart. J. Roy. Meteor. Soc, 128 , 25632584.

    • Search Google Scholar
    • Export Citation
  • Seidov, D., and M. Maslin, 2001: Atlantic Ocean heat piracy and the bipolar climate see-saw during Heinrich and Dansgaard–Oeschger events. J. Quat. Sci, 16 , 321328.

    • Search Google Scholar
    • Export Citation
  • Severinghaus, J. P., and E. J. Brook, 1999: Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science, 286 , 930934.

    • Search Google Scholar
    • Export Citation
  • Steig, E. J., and R. B. Alley, 2002: Phase relationships between Antarctic and Greenland climate records. Ann. Glaciol, 35 , 451456.

  • Steig, E. J., and Coauthors, 1998: Synchronous climate changes in Antarctic and the North Atlantic. Science, 282 , 9295.

  • Steig, E. J., J. L. Fastook, C. Zweck, I. D. Goodwin, K. J. Licht, J. W. C. White, and R. P. Ackert Jr., 2000: West Antarctic Ice Sheet elevation changes. Antarct. Res. Ser, 77 , 7590.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., 1998: The seesaw effect. Science, 282 , 6162.

  • Stocker, T. F., and S. J. Johnsen, 2003: A minimum model for the bipolar see-saw. Paleoceanography,18, 1087, doi:10.1029/2003PA000920.

  • Stuiver, M., P. M. Grootes, and T. F. Braziunas, 1995: The GISP2 δ18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes. Quat. Res, 44 , 341354.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. C., G. W. Lamorey, G. A. Doyle, R. B. Alley, P. M. Grootes, P. A. Mayewski, J. W. C. White, and L. K. Barlow, 1993: The “flickering switch” of late Pleistocene climate change. Nature, 361 , 432436.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Weaver, A. J., and E. S. Sarachik, 1991: The role of mixed boundary conditions in numerical models of the ocean's climate. J. Phys. Oceanogr, 21 , 14701493.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., O. A. Saenko, P. U. Clark, and J. X. Mitrovica, 2003: Meltwater Pulse 1A from Antarctica as a trigger of the B;tolling-Aller;tod warm interval. Science, 299 , 17091713.

    • Search Google Scholar
    • Export Citation
  • Winton, M., and E. S. Sarachik, 1993: Thermohaline Oscillations induced by strong steady salinity forcing of ocean general circulation models. J. Phys. Oceanogr, 23 , 13891409.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2001: On sharp spectral lines in the climate record and the millennial peak. Paleoceanography, 15 , 417424.

  • Wunsch, C., 2003: Greenland–Antarctic phase relationships and millennial time-scale climate fluctuations in the Greenland cores. Quat. Sci. Rev, 22 , 16311646.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., and D. S. Battisti, 2001: The importance of tropical sea surface temperature patterns in simulations of Last Glacial Maximum climate. J. Climate, 14 , 565581.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 702 182 13
PDF Downloads 313 81 6