• Andreae, M. O., 1983: Soot carbon and excess fine potassium: Long-range transport of combustion-derived aerosols. Science, 220 , 11481151.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., and P. Merlet, 2001: Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles, 15 , 955966.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., T. W. Andreae, R. J. Ferek, and H. Raemdonck, 1984: Long range transport of soot carbon in the marine atmosphere. Sci. Total Environ, 36 , 7380.

    • Search Google Scholar
    • Export Citation
  • Beine, H., I. Allegrini, R. Sparapani, A. Ianniello, and F. Valentini, 2001: Three years of springtime trace gas and particle measurements at Ny-Alesund, Svalbard. Atmos. Environ, 35 , 36453658.

    • Search Google Scholar
    • Export Citation
  • Bolin, B., and R. Sukumar, 2000: Global perspective. Land Use, Land-Use Change, and Forestry, R. T. Watson et al., Eds., Cambridge University Press, 24–51.

    • Search Google Scholar
    • Export Citation
  • Bond, T. C., D. G. Streets, K. F. Yarber, S. M. Nelson, J-H. Woo, and Z. Kilmont, 2004: A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res., in press.

    • Search Google Scholar
    • Export Citation
  • Cachier, H., P. Buat-Ménard, M. Fontugne, and R. Chesselet, 1986: Long-range transport of continentally-derived particulate carbon in the marine atmosphere: Evidence from stable carbon isotope studies. Tellus, 38B , 161177.

    • Search Google Scholar
    • Export Citation
  • Cachier, H., M-P. Brémond, and P. Buat-Ménard, 1989: Determination of atmospheric soot carbon with a simple thermal method. Tellus, 41B , 379390.

    • Search Google Scholar
    • Export Citation
  • Cachier, H., C. Liousse, A. Cachier, B. Ardouin, G. Polian, V. Kazan, and A. D. Hansen, 1994: A. Black carbon aerosols at the remote site of Amsterdam Island. Proc. Fifth Int. Conf. on Carbonaceous Aerosols, Berkeley, CA, U.S. Dept. of Energy.

    • Search Google Scholar
    • Export Citation
  • Carvalho Jr., J. A., N. Higuchi, T. M. Araujo, and J. C. Santos, 1998: Combustion completeness in a rainforest clearing experiment in Manaus, Brazil. J. Geophys. Res, 103 , 1319513199.

    • Search Google Scholar
    • Export Citation
  • Carvalho Jr., J. A., F. S. Costa, C. A. Gurgel Veras, D. Sandberg, E. C. Alvarado, R. Gielow, A. M. Serra Jr., and J. C. Saros, 2001: Biomass fire consumption and carbon release rates of rainforest clearing experiments conducted in northern Mato Grosso, Brazil. J. Geophys. Res, 106 , 1787717887.

    • Search Google Scholar
    • Export Citation
  • Chesselet, R., M. Fontugne, P. Buat-Ménard, U. Ezat, and C. E. Lambert, 1981: The origin of particulate organic carbon in the marine atmosphere as indicated by its stable carbon isotopic composition. Geophys. Res. Lett, 8 , 345348.

    • Search Google Scholar
    • Export Citation
  • Chowdhury, Z., L. S. Hughes, L. G. Salmon, and G. R. Cass, 2001: Atmospheric particle size and composition measurements to support light extinction calculations over the Indian Ocean. J. Geophys. Res, 106 , 2859728605.

    • Search Google Scholar
    • Export Citation
  • Christopher, S. A., J. Chou, J. Zhang, X. Li, T. A. Berendes, and R. M. Welch, 2000a: Shortwave direct radiative forcing of biomass burning aerosols estimated using VIRS and CERES data. Geophys. Res. Lett, 27 , 21972200.

    • Search Google Scholar
    • Export Citation
  • Christopher, S. A., X. Li, R. M. Welch, J. S. Reid, P. V. Hobbs, T. F. Eck, and B. Holben, 2000b: Estimation of surface and top-of-atmosphere shortwave irradiance in biomass-burning regions during SCAR-B. J. Appl. Meteor, 39 , 17421753.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. D., 1989: Aerosol light absorption by soot in remote environments. Aerosol Sci. Technol, 10 , 161171.

  • Cooke, W. F., and J. J. N. Wilson, 1996: A global black carbon aerosol model. J. Geophys. Res, 101 , 1939519409.

  • Crutzen, P. J., and M. O. Andreae, 1990: Biomass burning in the Tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science, 21 , 16691677.

    • Search Google Scholar
    • Export Citation
  • Ding, P., and D. A. Randall, 1998: A cumulus parameterization with multiple cloud-base levels. J. Geophys. Res, 103 , 1134111353.

  • Dubovik, O., B. N. Holben, Y. J. Kaufman, M. Yamasoe, A. Smirnov, D. Tanre, and I. Slutsker, 1998: Single-scattering albedo of smoke retrieved from the sky radiance and solar transmittance measured from ground. J. Geophys. Res, 103 , 3190331923.

    • Search Google Scholar
    • Export Citation
  • Dubovik, O., B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, 2002: Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci, 59 , 590608.

    • Search Google Scholar
    • Export Citation
  • Dzubay, T. G., R. K. Stevens, and P. L. Haagenson, 1984: Composition and origins of aerosol at a forested mountain in Soviet Georgia. Environ. Sci. Technol, 18 , 873883.

    • Search Google Scholar
    • Export Citation
  • Eck, T. F., B. N. Holben, I. Slutsker, and A. Setzer, 1998: Measurements of irradiance attenuation and estimation of aerosol single scattering albedo for biomass burning aerosols in Amazonia. J. Geophys. Res, 103 , 3186531878.

    • Search Google Scholar
    • Export Citation
  • Eck, T. F., and Coauthors, 2001: Characterization of the optical properties of biomass burning aerosols in Zambia during the 1997 ZIBBEE field campaign. J. Geophys. Res, 106 , 34253448.

    • Search Google Scholar
    • Export Citation
  • Eck, T. F., and Coauthors, 2003: Variability of biomass burning aerosol optical characteristics in southern Africa during the SAFARI 2000 dry season campaign and a comparison of single scattering albedo estimates from radiometric measurements. J. Geophys. Res.,108, 8477, doi:10.1029/2002JD002321.

    • Search Google Scholar
    • Export Citation
  • Ferek, R. J., J. S. Reid, P. V. Hobbs, D. R. Blake, and C. Liousse, 1998: Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil. J. Geophys. Res, 103 , 3210732118.

    • Search Google Scholar
    • Export Citation
  • Gaffney, J. S., R. L. Tanner, and M. Phillips, 1984: Separating carbonaceous aerosol source terms using thermal evolution, carbon isotropic measurements, and C/N/S determinations. Sci. Total Environ, 36 , 5360.

    • Search Google Scholar
    • Export Citation
  • Grant, K. E., C. C. Chuang, A. S. Grossman, and J. E. Penner, 1999: Modeling the spectral optical properties of ammonium sulfate and biomass burning aerosols: Parameterization of relative humidity effects and model results. Atmos. Environ, 33 , 26032620.

    • Search Google Scholar
    • Export Citation
  • Hao, W. M., and M-H. Liu, 1994: Spatial and temporal distribution of tropical biomass burning. Global Biogeochem. Cycles, 8 , 495503.

  • Harmon, M. E., W. K. Ferrell, and J. F. Franklin, 1990: Effects on carbon storage of conversion of old-growth forests to young forests. Science, 247 , 699702.

    • Search Google Scholar
    • Export Citation
  • Heidam, N. Z., P. Wahlin, and J. H. Christensen, 1999: Tropospheric gases and aerosols in northeast Greenland. J. Atmos. Sci, 56 , 261278.

    • Search Google Scholar
    • Export Citation
  • Hillamo, R., V-M. Kerminen, M. Aurela, T. Makela, W. Maenhaut, and C. Leck, 2001: Modal structure of chemical mass size distribution in the high Arctic aerosol. J. Geophys. Res, 106 , 2755527571.

    • Search Google Scholar
    • Export Citation
  • Hjellbrekke, A-G., and J. E. Hanssen, 1998: 1996 data report. 1. Annual summaries. EMEP/CCC Rep. 1/98, 85 pp. [Available from Norwegian Institute for Air Research, Lillestrom, Norway.].

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., J. S. Reid, R. A. Kotchenruther, R. J. Ferek, and R. Weiss, 1997: Direct radiative forcing by smoke from biomass burning. Science, 275 , 17761778.

    • Search Google Scholar
    • Export Citation
  • Hoffert, M. I., A. J. Callegari, and C-T. Hsieh, 1980: The role of deep sea heat storage in the secular response of climatic forcing. J. Geophys. Res, 85 , 66676679.

    • Search Google Scholar
    • Export Citation
  • Hoffman, E. J., and R. A. Duce, 1977: Organic carbon in marine atmospheric particulate matter: Concentration and particle size distribution. Geophys. Res. Lett, 4 , 449452.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. Van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Eds.,. 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Houghton, R. A., 1999: The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus, 51B , 298313.

  • Houghton, R. A., D. L. Skole, C. A. Nobre, J. L. Hackler, K. T. Lawrence, and W. H. Chomentowski, 2000: Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature, 403 , 301304.

    • Search Google Scholar
    • Export Citation
  • Husar, R. B., J. M. Prospero, and L. L. Stowe, 1997: Characterization of tropospheric aerosols over the oceans with the NOAA Advanced Very High Resolution Radiometer optical thickness operational product. J. Geophys. Res, 102 , 1688916909.

    • Search Google Scholar
    • Export Citation
  • Iacobellis, S. F., R. Frouin, and R. C. J. Somerville, 1999: Direct climate forcing by biomass-burning aerosols: Impact of correlations between controlling variables. J. Geophys. Res, 104 , 1203112045.

    • Search Google Scholar
    • Export Citation
  • Ishizaka, Y., and M. Adhikari, 2003: Composition of cloud condensation nuclei. J. Geophys. Res.,108, 4138, doi:10.1029/ 2002JD002085.

  • Jacobson, M. Z., 1997: Development and application of a new air pollution modeling system—Part III. Aerosol-phase simulations. Atmos. Environ, 31 , 587608.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., 2001a: GATOR-GCMM: A global-through urban-scale air pollution and weather forecast model. Part 1: Model design and treatment of subgrid soil, vegetation, roads, rooftops, water, sea ice, and snow. J. Geophys. Res, 106 , 53855401.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., 2001b: GATOR-GCMM: A study of daytime and nighttime ozone layers aloft, ozone in national parks, and weather during the SARMAP field campaign. J. Geophys. Res, 106 , 54035420.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., 2001c: Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. J. Geophys. Res, 106 , 15511568.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., 2001d: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409 , 695697.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., 2002a: Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J. Geophys. Res.,107, 4410, doi:10.1029/ 2001JD001376.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., 2002b: Analysis of aerosol interactions with numerical techniques for solving coagulation, nucleation, condensation, dissolution, and reversible chemistry among multiple size distributions. J. Geophys. Res.,107, 4366, doi:10.1029/2001JD002044.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., 2003: Development of mixed-phase clouds from multiple aerosol size distributions and the effect of the clouds on aerosol removal. J. Geophys. Res.,108, 4245, doi:10.1029/2002JD002691.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., cited 2004: Updates to “Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming.”. [Available online at http://www.stanford.edu/group/efmh/fossil/fossil.html.].

    • Search Google Scholar
    • Export Citation
  • Johansen, A. M., R. L. Siefert, and M. R. Hoffmann, 2000: Chemical composition of aerosols collected over the tropical North Atlantic Ocean. J. Geophys. Res, 105 , 1527715312.

    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., and C. A. Clayson, 2000: Small Scale Processes in Geophysical Fluid Flows. Academic Press, 888 pp.

  • Kauffman, J. B., D. L. Cummings, D. E. Ward, and R. Babbitt, 1995: Fire in the Brazilian Amazon: 1. Biomass, nutrient pools, and losses in slashed primary forests. Oecologia, 104 , 397408.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., and R. S. Fraser, 1997: The effect of smoke particles on clouds and climate forcing. Science, 277 , 16361639.

  • Keeler, G. J., S. M. Japar, W. W. Brachaczek, R. A. Gorse, J. M. Norbeck, and W. R. Pierson, 1990: The sources of aerosol elemental carbon at Allegheny Mountain. Atmos. Environ, 24A , 27952805.

    • Search Google Scholar
    • Export Citation
  • Kerminen, V-M., K. Teinila, and R. Hillamo, 2000: Chemistry of sea-salt particles in the summer Antarctic atmosphere. Atmos. Environ, 34 , 28172825.

    • Search Google Scholar
    • Export Citation
  • Ketsidiris, G., J. Hahn, R. Jaenicke, and C. Junge, 1976: The organic constituents of atmospheric particulate matter. Atmos. Environ, 10 , 603610.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and K. E. Trenberth, 1997: Earth's annual global mean energy budget. Bull. Amer. Meteor. Soc, 78 , 197208.

  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Kim, B. M., S. Teffera, and M. D. Zeldin, 2000: Characterization of PM2.5 and PM10 in the South Coast Air Basin of Southern California: Part 1—Spatial variations. J. Air Waste Manage. Assoc, 50 , 20342044.

    • Search Google Scholar
    • Export Citation
  • Kim, Y. P., K-C. Moon, and J. H. Lee, 2000: Organic and elemental carbon in fine particles at Kosan, Korea. Atmos. Environ, 34 , 33093317.

    • Search Google Scholar
    • Export Citation
  • Kittelson, D. B., 1998: Engine and nanoparticles: A review. J. Aerosol Sci, 6 , 443451.

  • Kreidenweis, S. M., L. A. Remer, R. Bruintjes, and O. Dubovik, 2001: Smoke aerosol from biomass burning in Mexico: Hygroscopic smoke optical model. J. Geophys. Res, 106 , 48314844.

    • Search Google Scholar
    • Export Citation
  • Krivacsy, Z., and Coauthors, 2001: Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites. Atmos. Environ, 35 , 62316244.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., and T. B. Sanford, 1996: Abyssal mixing: Where it is not. J. Phys. Oceanogr, 26 , 22862296.

  • Liousse, C., J. E. Penner, J. J. Walton, H. Eddleman, C. Chuang, and H. Cachier, 1996: Modeling biomass burning aerosols. Biomass Burning and Global Change, J. S. Levine, Ed., MIT Press, 492– 508.

    • Search Google Scholar
    • Export Citation
  • Mari, C., D. J. Jacob, and P. Bechtold, 2000: Transport and scavenging of soluble gases in a deep convective cloud. J. Geophys. Res, 105 , 2225522267.

    • Search Google Scholar
    • Export Citation
  • Marland, G., T. A. Boden, and R. J. Andres, 2003: Global, regional, and national CO2 emissions. Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. [Available online at http://cdiac.esd.orn/.gov/trends/emis/meth_reg.htm.].

    • Search Google Scholar
    • Export Citation
  • Mauzerall, D. L., and Coauthors, 1998: Photochemistry in biomass burning plumes and implications for tropospheric ozone over the tropical South Atlantic. J. Geophys. Res, 103 , 84018423.

    • Search Google Scholar
    • Export Citation
  • McNaughton, D. J., and R. J. Vet, 1996: Eulerian model evaluation field study (EMEFS): A summary of surface network measurements and data quality. Atmos. Environ, 30 , 227238.

    • Search Google Scholar
    • Export Citation
  • Mukai, H., Y. Ambe, K. Shibata, T. Muku, K. Takeshita, T. Fukuma, J. Takahashi, and S. Mizota, 1990: Long term variation of chemical composition of atmospheric aerosol on the Oki Islands in the Sea of Japan. Atmos. Environ, 24A , 13791390.

    • Search Google Scholar
    • Export Citation
  • NCEP, 2002: 2.5 degree global final analyses. Data Support Section, National Center for Atmospheric Research.

  • Novakov, T., and J. E. Penner, 1993: Large contributions of organic aerosols to cloud-condensation nuclei concentrations. Nature, 365 , 823826.

    • Search Google Scholar
    • Export Citation
  • Ohta, S., and T. Okita, 1984: Measurements of particulate carbon from the atmosphere. Sci. Total Environ, 18 , 24392445.

  • Penner, J. E., R. E. Dickinson, and C. A. O'Neill, 1992: Effects of aerosol from biomass burning on the global radiation budget. Science, 256 , 14321434.

    • Search Google Scholar
    • Export Citation
  • Penner, J. E., C. C. Chuang, and K. Grant, 1998: Climate forcing by carbonaceous and sulfate aerosols. Climate Dyn, 14 , 839851.

  • Poorter, H., 1993: Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio, 104/ 105 , 7797.

    • Search Google Scholar
    • Export Citation
  • Puxbaum, H., J. Rendl, R. Allabashi, L. Otter, and M. C. Scholes, 2000: Mass balance of the atmospheric aerosol in a South African subtropical savanna (Nylsvley, May 1997). J. Geophys. Res, 105 , 2069720706.

    • Search Google Scholar
    • Export Citation
  • Quinn, P. K., D. J. Coffman, T. S. Bates, T. L. Miller, J. E. Johnson, K. Voss, E. J. Welton, and C. Neusus, 2001: Dominant aerosol chemical components and their contribution to extinction during the Aerosols99 cruise across the Atlantic. J. Geophys. Res, 106 , 2078320809.

    • Search Google Scholar
    • Export Citation
  • Reid, J. S., and P. V. Hobbs, 1998: Physical and optical properties of young smoke from individual biomass fires in Brazil. J. Geophys. Res, 103 , 3201332030.

    • Search Google Scholar
    • Export Citation
  • Robock, A., 1988: Enhancement of surface cooling due to forest fire smoke. Science, 242 , 911913.

  • Ross, J. L., P. V. Hobbs, and B. Holben, 1998: Radiative characteristics of regional hazes dominated by smoke from biomass burning in Brazil: Closure tests and direct radiative forcing. J. Geophys. Res, 103 , 3192531941.

    • Search Google Scholar
    • Export Citation
  • Schlamadinger, B., and T. Karjalainen, 2000: Afforestation, reforestation, and deforestation (ARD) activities. Land Use, Land-Use Change, and Forestry, R. T. Watson et al., Eds., Cambridge University Press, 127–179.

    • Search Google Scholar
    • Export Citation
  • Spadaro, J. V., and A. Rabl, 2001: Damage costs due to automotive air pollution and the influence of street canyons. Atmos. Environ, 35 , 47634775.

    • Search Google Scholar
    • Export Citation
  • Stern, D. I., and R. K. Kaufman, 1998: Annual estimates of global anthropogenic methane emissions: 1860–1994. Trends Online: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. [Available online at http://cdiac.esd.orn/.gov/trends/meth/ch4.htm.].

    • Search Google Scholar
    • Export Citation
  • Stocks, B. J., and Coauthors, 1998: Climate change and forest fire potential in Russian and Canadian boreal forests. Climatic Change, 38 , 113.

    • Search Google Scholar
    • Export Citation
  • Tarasova, T. A., C. A. Nobre, B. N. Holben, T. F. Eck, and A. Setzer, 1999: Assessment of smoke aerosol impact on surface solar irradiance measured in the Rondonia region of Brazil during Smoke, Clouds, and Radiation—Brazil. J. Geophys. Res, 104 , 1916119170.

    • Search Google Scholar
    • Export Citation
  • Temesi, D., A. Molnar, E. Meszaros, T. Feczko, A. Gelencser, G. Kiss, and Z. Krivacsy, 2001: Size resolved chemical mass balance of aerosol particles over rural Hungary. Atmos. Environ, 35 , 43474355.

    • Search Google Scholar
    • Export Citation
  • Torres, O., P. K. Bhartia, J. R. Herman, A. Sinyuk, P. Ginoux, and B. Holben, 2002: A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements. J. Atmos. Sci, 59 , 398413.

    • Search Google Scholar
    • Export Citation
  • Weingartner, E., H. Burtscher, and U. Baltensperger, 1997: Hygroscopic properties of carbon and diesel soot particles. Atmos. Environ, 31 , 23112327.

    • Search Google Scholar
    • Export Citation
  • Wolff, G. T., M. S. Ruthkosky, D. P. Stroup, P. E. Korsog, M. A. Ferman, G. J. Wendel, and D. H. Stedman, 1986: Measurements of SOx, NOx and aerosol species on Bermuda. Atmos. Environ, 20 , 12291239.

    • Search Google Scholar
    • Export Citation
  • Zappoli, S., and Coauthors, 1999: Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility. Atmos. Environ, 33 , 27332743.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., S. A. Christopher, and B. N. Holben, 2001: Intercomparison of smoke aerosol optical thickness derived from GOES 8 imager and ground-based sun photometers. J. Geophys. Res, 106 , 73877397.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 681 159 23
PDF Downloads 350 101 17

The Short-Term Cooling but Long-Term Global Warming Due to Biomass Burning

Mark Z. JacobsonDepartment of Civil and Environmental Engineering, Stanford University, Stanford, California

Search for other papers by Mark Z. Jacobson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Biomass burning releases gases (e.g., CO2, CO, CH4, NOx, SO2, C2H6, C2H4, C3H8, C3H6) and aerosol particle components (e.g., black carbon, organic matter, K+, Na+, Ca2+, Mg2+, NH4+, H+, Cl, H2SO4, HSO4, SO42−, NO3). To date, the global-scale climate response of controlling emission of these constituents together has not been examined. Here 10-yr global simulations of the climate response of biomass-burning aerosols and short-lived gases are coupled with numerical calculations of the long-term effect of controlling biomass-burning CO2 and CH4 to estimate the net effect of controlling burning over 100 yr. Whereas eliminating biomass-burning particles is calculated to warm temperatures in the short term, this warming may be more than offset after several decades by cooling due to eliminating long-lived CO2, particularly from permanent deforestation. It is also shown analytically that biomass burning always results in CO2 accumulation, even when regrowth fluxes equal emission fluxes and in the presence of fertilization. Further, because burning grassland and cropland yearly, as opposed to every several years, increases CO2, biofuel burning, considered a “renewable” energy source, is only partially renewable, and biomass burning elevates CO2 until it is stopped. Because CO2 from biomass burning is considered recyclable and biomass particles are thought to cool climate, the Kyoto Protocol did not consider biomass-burning controls. If the results here, which apply to a range of scenarios but are subject to uncertainty, are correct, such control may slow global warming, contrary to common perception, and improve human health.

Corresponding author address: Dr. Mark Z. Jacobson, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020. Email: jacobson@stanford.edu

Abstract

Biomass burning releases gases (e.g., CO2, CO, CH4, NOx, SO2, C2H6, C2H4, C3H8, C3H6) and aerosol particle components (e.g., black carbon, organic matter, K+, Na+, Ca2+, Mg2+, NH4+, H+, Cl, H2SO4, HSO4, SO42−, NO3). To date, the global-scale climate response of controlling emission of these constituents together has not been examined. Here 10-yr global simulations of the climate response of biomass-burning aerosols and short-lived gases are coupled with numerical calculations of the long-term effect of controlling biomass-burning CO2 and CH4 to estimate the net effect of controlling burning over 100 yr. Whereas eliminating biomass-burning particles is calculated to warm temperatures in the short term, this warming may be more than offset after several decades by cooling due to eliminating long-lived CO2, particularly from permanent deforestation. It is also shown analytically that biomass burning always results in CO2 accumulation, even when regrowth fluxes equal emission fluxes and in the presence of fertilization. Further, because burning grassland and cropland yearly, as opposed to every several years, increases CO2, biofuel burning, considered a “renewable” energy source, is only partially renewable, and biomass burning elevates CO2 until it is stopped. Because CO2 from biomass burning is considered recyclable and biomass particles are thought to cool climate, the Kyoto Protocol did not consider biomass-burning controls. If the results here, which apply to a range of scenarios but are subject to uncertainty, are correct, such control may slow global warming, contrary to common perception, and improve human health.

Corresponding author address: Dr. Mark Z. Jacobson, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020. Email: jacobson@stanford.edu

Save