Abstract
A procedure is described that provides guidance in determining the number of stations required in a climate observing system deployed to capture temporal variability in the spatial mean of a climate parameter. The method entails reducing the density of an existing station network in a step-by-step fashion and quantifying subnetwork performance at each iteration. Under the assumption that the full network for the study area provides a reasonable estimate of the true spatial mean, this degradation process can be used to quantify the relationship between station density and network performance. The result is a systematic “cost–benefit” relationship that can be used in conjunction with practical constraints to determine the number of stations to deploy.
The approach is demonstrated using temperature and precipitation anomaly data from 4012 stations in the conterminous United States over the period 1971–2000. Results indicate that a U.S. climate observing system should consist of at least 25 quasi-uniformly distributed stations in order to reproduce interannual variability in temperature and precipitation because gains in the calculated performance measures begin to level off with higher station numbers. If trend detection is a high priority, then a higher density network of 135 evenly spaced stations is recommended. Through an analysis of long-term observations from the U.S. Historical Climatology Network, the 135-station solution is shown to exceed the climate monitoring goals of the U.S. Climate Reference Network.
Corresponding author address: Dr. Russell S. Vose, National Climatic Data Center, 151 Patton Avenue, Asheville, NC 28801. Email: Russell.Vose@noaa.gov