• Arakawa, A., 2000: Future development of general circulation models. General Circulation Model Development: Past, Present and Future,. D. A. Randall, Ed., Academic Press, 721–780.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and V. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics,. J. Change, Ed., Vol. 17, Academic Press, 173–265.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and Y-J. G. Hsu, 1990: Energy conserving and potential-entropy dissipating schemes for the shallow water equations. Mon. Wea. Rev, 118 , 19601969.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and C. S. Konor, 1994: A generalized vertical coordinate and the choice of vertical grid for atmospheric models. Proc. Int. Symp. on the Life Cycles of Extratropical Cyclones, Vol. 3, Bergen, Norway, Amer. Meteor. Soc. and Norwegian Geophysical Society, 259–264.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., 1989: An isentropic mesoα-scale analysis system and its sensitivity to aircraft and surface observations. Mon. Wea. Rev, 117 , 15861603.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., G. A. Grell, J. M. Brown, R. Bleck, K. J. Brundage, T. L. Smith, and P. A. Miller, 1994: An operational isentropic/sigma hybrid forecast model and data assimilation system. Proc. Int. Symp. on the Life Cycles of Extratropical Cyclones, Vol. 3, Bergen, Norway, Amer. Meteor. Soc. and Norwegian Geophysical Society, 259–264.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., 1978: On the use of hybrid vertical coordinates in numerical weather prediction models. Mon. Wea. Rev, 106 , 12331244.

  • Bleck, R., and S. G. Benjamin, 1993: Regional weather prediction with a model combining terrain-following and isentropic coordinates. Part I: Model description. Mon. Wea. Rev, 121 , 17701785.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and Coauthors, 1991: An intercomparison of the climates simulated by 14 atmospheric general circulation models. WCRP Rep. 58, WMO/TD-425, 165 pp.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and Coauthors, 1992: Some results from an intercomparison of the climates simulated by 14 atmospheric general circulation models. J. Geophys. Res, 97 , 1277112786.

    • Search Google Scholar
    • Export Citation
  • Carpenter Jr., R. L., K. K. Droegemeier, P. R. Woodward, and C. E. Hane, 1990: Application of the piecewise parabolic method (PPM) to meteorological modeling. Mon. Wea. Rev, 118 , 586612.

    • Search Google Scholar
    • Export Citation
  • Chipperfield, M. P., J. A. Pyle, C. E. Blom, N. Glatthor, M. Hopfner, and T. Gulde, 1995: The variability of C1ONO2 in the Arctic Polar Vortex: Comparison of Transall MIPAS measurements and 3D model results. J. Geophys. Res, 100 , 91159129.

    • Search Google Scholar
    • Export Citation
  • Colella, P., and P. R. Woodward, 1984: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys, 54 , 174201.

    • Search Google Scholar
    • Export Citation
  • Egger, J. A., 1999: Numerical generation of entropies. Mon. Wea. Rev, 127 , 22112216.

  • Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc, 80 , 2955.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., J. T. Kiehl, and J. W. Hurrell, 1998: The hydrologic and thermodynamic characteristics of the NCAR CCM3. J. Climate, 11 , 11791206.

    • Search Google Scholar
    • Export Citation
  • Hsu, Y-J. G., and A. Arakawa, 1990: Numerical modeling of the atmosphere with an isentropic vertical coordinate. Mon. Wea. Rev, 118 , 19331959.

    • Search Google Scholar
    • Export Citation
  • Hurrel, J. W., J. J. Hack, B. A. Boville, D. L. Williamson, and J. T. Kiehl, 1998: The dynamical simulation of the NCAR Community Climate Model version 3 (CCM3). J. Climate, 11 , 12071236.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. R., 1980: A generalized transport equation for use with meteorological coordinate systems. Mon. Wea. Rev, 108 , 733745.

  • Johnson, D. R., 1989: The forcing and maintenance of global monsoonal circulations: An isentropic analysis. Advances in Geophysics, Vol. 31, Academic Press, 43–316.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. R., 1997: “General coldness of climate models” and the Second Law: Implications for modeling the earth system. J. Climate, 10 , 28262846.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. R., and Z. Yuan, 1998: The development and initial tests of an atmospheric model based on a vertical coordinate with a smooth transition from terrain following to isentropic coordinates. Adv. Atmos. Sci, 15 , 283299.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. R., T. H. Zapotocny, F. M. Reames, B. J. Wolf, and R. B. Pierce, 1993: A comparison of simulated precipitation by hybrid isentropic–sigma and sigma models. Mon. Wea. Rev, 121 , 20882114.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. R., A. J. Lenzen, T. H. Zapotocny, and T. K. Schaack, 2000: Numerical uncertainties in the simulation of reversible isentropic processes and entropy conservation. J. Climate, 13 , 38603884.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. R., A. J. Lenzen, T. H. Zapotocny, and T. K. Schaack, 2002: Numerical uncertainties in the simulation of reversible isentropic processes and entropy conservation: Part II. J. Climate, 15 , 17771804.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc, 77 , 437471.

  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, 1996: Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Note NCAR/TN-420+STR, 152 pp.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and D. R. Duran, 1983: An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Wea. Rev, 111 , 430444.

    • Search Google Scholar
    • Export Citation
  • Konor, C. S., and A. Arakawa, 1997: Design of an atmospheric model based on a generalized vertical coordinate. Mon. Wea. Rev, 125 , 16491673.

    • Search Google Scholar
    • Export Citation
  • Konor, C. S., and A. Arakawa, 2001: Incorporation of moist processes and a PBL parameterization into the generalized vertical coordinate model. Tech. Rep. 102, Department of Atmospheric Sciences, UCLA, 63 pp.

    • Search Google Scholar
    • Export Citation
  • Konor, C. S., C. R. Mechoso, and A. Arakawa, 1994: Comparison of frontogenesis simulations with isentropic and normalized pressure vertical coordinates. Proc Int. Symp. on the Life Cycles of Extratropical Cyclones, Vol. 2, Bergen, Norway, Amer. Meteor. Soc. and Norwegian Geophysical Society, 264–268.

    • Search Google Scholar
    • Export Citation
  • Li, Y., S. Moorthi, and J. R. Bates, 1994: Direct solution of the implicit formulation of fourth order horizontal diffusion for gridpoint models on the sphere. Technical Report Series on Global Modeling and Data Assimilation, M. J. Saurez, Ed., NASA Tech. Memo. 104606, Vol. 2, 42 pp.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and A. Arakawa, 1976: Numerical Methods Used in Atmospheric Models,. Vol. 1. GARP Publication Series No. 17, WMO, Amer. Meteor. Soc. and Norwegian Geophysical Society, 264–268.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Pierce, R. B., and T. D. A. Fairlie, 1993: Chaotic advection in the stratosphere: Implications for the dispersal of chemically perturbed air from the polar vortex. J. Geophys. Res, 98D , 1858918595.

    • Search Google Scholar
    • Export Citation
  • Pierce, R. B., D. R. Johnson, F. M. Reames, T. H. Zapotocny, and B. J. Wolf, 1991: Numerical investigations with a hybrid isentropic–sigma model. Part I: Normal-mode characteristics. J. Atmos. Sci, 48 , 20052024.

    • Search Google Scholar
    • Export Citation
  • Randel, D. L., T. H. Vonder Haar, M. A. Ringerud, G. L. Stephens, T. J. Greenwald, and C. L. Combs, 1996: A new global water vapor dataset. Bull. Amer. Meteor. Soc, 77 , 12331246.

    • Search Google Scholar
    • Export Citation
  • Reames, F. M., and T. H. Zapotocny, 1999a: Inert trace constituent transport in sigma and hybrid isentropic–sigma models. Part I: Nine advection algorithms. Mon. Wea. Rev, 127 , 173187.

    • Search Google Scholar
    • Export Citation
  • Reames, F. M., and T. H. Zapotocny, 1999b: Inert trace constituent transport in sigma and hybrid isentropic–sigma models. Part II: Twelve semi-Lagrangian algorithms. Mon. Wea. Rev, 127 , 188200.

    • Search Google Scholar
    • Export Citation
  • Rood, R. B., 1987: Numerical advection algorithms and their role in atmospheric transport and chemistry models. Rev. Geophys, 25 , 71100.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., R. B. Rood, and J. Pfaendtner, 1993: An assimilated dataset for earth science applications. Bull. Amer. Meteor. Soc, 74 , 23312342.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and L. L. Takacs, cited 1994: Documentation of the ARIES/GEOS Dynamical Core: Version 2. [Available online at http://nsipp.gsfc.nasa.gov/reports/volume_5.pdf].

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., D. Williamson, and F. Zwiers, 2001: AMIP II sea surface temperature and sea ice concentration boundary conditions. [Available online at http://www-pcmdi.lln.gov/amip/AMIPEXPDSN/BUS/amip2bcs.html.].

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., 1993: Baroclinic-wave life cycles, climate simulations and cross-isentropic mass flow in a hybrid isentropic coordinate GCM. Quart. J. Roy. Meteor. Soc, 119 , 489508.

    • Search Google Scholar
    • Export Citation
  • Webster, S., J. T. Thuburn, G. Hoskins, and M. Rodwell, 1999: Further development of a hybrid-isentropic GCM. Quart. J. Roy. Meteor. Soc, 125 , 23052331.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc, 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Zapotocny, T. H., D. R. Johnson, F. M. Reames, R. B. Pierce, and B. J. Wolf, 1991: Numerical investigations with a hybrid isentropic– sigma model. Part II: The inclusion of moist processes. J. Atmos. Sci, 48 , 20252043.

    • Search Google Scholar
    • Export Citation
  • Zapotocny, T. H., D. R. Johnson, and F. M. Reames, 1994: Development and initial test of the University of Wisconsin global hybrid isentropic–sigma model. Mon. Wea. Rev, 122 , 21602178.

    • Search Google Scholar
    • Export Citation
  • Zapotocny, T. H., A. J. Lenzen, D. R. Johnson, F. M. Reames, P. A. Politowicz, and T. K. Schaack, 1996: Joint distributions of potential vorticity and inert trace constituent in CCM2 and UW θσ model simulations. Geophys. Res. Lett, 23 , 25252528.

    • Search Google Scholar
    • Export Citation
  • Zapotocny, T. H., D. R. Johnson, T. K. Schaack, A. J. Lenzen, F. M. Reames, P. A. Politowicz, and Z. Yuan, 1997a: Simulations of tropospheric joint distributions in the UW θσ model and CCM2. Geophys. Res. Lett, 24 , 865868.

    • Search Google Scholar
    • Export Citation
  • Zapotocny, T. H., A. J. Lenzen, D. R. Johnson, F. M. Reames, and T. K. Schaack, 1997b: A comparison of inert trace constituent transport between the University of Wisconsin isentropic–sigma model and the NCAR Community Climate Model. Mon. Wea. Rev, 125 , 120142.

    • Search Google Scholar
    • Export Citation
  • Zhu, Z., 1997: Precipitation and water vapor transport simulated by a hybrid σθ coordinate GCM. J. Climate, 10 , 9881003.

  • Zhu, Z., and E. K. Schneider, 1997: Improvement in stratosphere simulation with a hybrid σθ coordinate GCM. Quart. J. Roy. Meteor. Soc, 123 , 20952113.

    • Search Google Scholar
    • Export Citation
  • Zhu, Z., J. Thuburn, B. J. Hoskins, and P. H. Haynes, 1992: A vertical finite-difference scheme based on a hybrid σθp coordinate. Mon. Wea. Rev, 120 , 851862.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 170 16 0
PDF Downloads 16 8 0

Global Climate Simulation with the University of Wisconsin Global Hybrid Isentropic Coordinate Model

Todd K. SchaackSpace Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Todd K. Schaack in
Current site
Google Scholar
PubMed
Close
,
Tom H. ZapotocnySpace Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Tom H. Zapotocny in
Current site
Google Scholar
PubMed
Close
,
Allen J. LenzenSpace Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Allen J. Lenzen in
Current site
Google Scholar
PubMed
Close
, and
Donald R. JohnsonSpace Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Donald R. Johnson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The purpose of this study is to briefly describe the global atmospheric University of Wisconsin (UW) hybrid isentropic–eta coordinate (UW θη) model and document results from a 14-yr climate simulation. The model, developed through modification of the UW hybrid isentropic–sigma (θσ) coordinate model, employs a vertical coordinate that smoothly varies from terrain following at the earth's surface to isentropic coordinates in the middle to upper troposphere. The UW θη model eliminates the discrete interface in the UW θσ model between the PBL expressed in sigma coordinates and the free atmosphere expressed in isentropic coordinates. The smooth transition of the modified model retains the excellent transport characteristics of the UW θσ model while providing for straightforward application of data assimilation techniques, use of higher-order finite-difference schemes, and implementation on massively parallel computing platforms.

This study sets forth the governing equations and describes the vertical structure employed by the UW θη model after which the results from a 14-yr climate simulation detail the model's simulation capabilities. Relative to reanalysis data and other fields, the dominant features of the global circulation, including seasonal variability, are well represented in the simulations, thus demonstrating the viability of the hybrid model for extended-length integrations. Overall the study documents that no insurmountable barriers exist to simulation of climate utilizing hybrid isentropic coordinate models. Additional results from two numerical experiments examining conservation demonstrate a high degree of numerical accuracy for the UW θη model in simulating reversibility and potential vorticity transport over a 10-day period that corresponds with the global residence time of water vapor.

Corresponding author address: Todd K. Schaack, Space Science and Engineering Center, University of Wisconsin—Madison, 1225 W. Dayton St., Madison, WI 53706. Email: todd.schaack@ssec.wisc.edu

Abstract

The purpose of this study is to briefly describe the global atmospheric University of Wisconsin (UW) hybrid isentropic–eta coordinate (UW θη) model and document results from a 14-yr climate simulation. The model, developed through modification of the UW hybrid isentropic–sigma (θσ) coordinate model, employs a vertical coordinate that smoothly varies from terrain following at the earth's surface to isentropic coordinates in the middle to upper troposphere. The UW θη model eliminates the discrete interface in the UW θσ model between the PBL expressed in sigma coordinates and the free atmosphere expressed in isentropic coordinates. The smooth transition of the modified model retains the excellent transport characteristics of the UW θσ model while providing for straightforward application of data assimilation techniques, use of higher-order finite-difference schemes, and implementation on massively parallel computing platforms.

This study sets forth the governing equations and describes the vertical structure employed by the UW θη model after which the results from a 14-yr climate simulation detail the model's simulation capabilities. Relative to reanalysis data and other fields, the dominant features of the global circulation, including seasonal variability, are well represented in the simulations, thus demonstrating the viability of the hybrid model for extended-length integrations. Overall the study documents that no insurmountable barriers exist to simulation of climate utilizing hybrid isentropic coordinate models. Additional results from two numerical experiments examining conservation demonstrate a high degree of numerical accuracy for the UW θη model in simulating reversibility and potential vorticity transport over a 10-day period that corresponds with the global residence time of water vapor.

Corresponding author address: Todd K. Schaack, Space Science and Engineering Center, University of Wisconsin—Madison, 1225 W. Dayton St., Madison, WI 53706. Email: todd.schaack@ssec.wisc.edu

Save