• Arpe, K., L. Dümenil, and M. A. Giorgetta, 1998: Variability of the Indian monsoon in the ECHAM3 model: Sensitivity to sea surface temperature, soil moisture, and the stratospheric quasi-biennial oscillation. J. Climate, 11 , 18371858.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2001: Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett, 28 , 44994502.

    • Search Google Scholar
    • Export Citation
  • Baquero-Bernal, A., M. Latif, and S. Legutke, 2002: On the dipolelike variability of sea surface temperature in the tropical Indian Ocean. J. Climate, 15 , 13581368.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, A., and A. Kitoh, 1998: Impact of localized sea surface temperature anomalies over the equatorial Indian Ocean on the Indian summer monsoon. J. Meteor. Soc. Japan, 76 , 841853.

    • Search Google Scholar
    • Export Citation
  • Chen, T-C., and M-C. Yen, 1994: Interannual variation of the Indian monsoon simulated by the NCAR Community Climate Model: Effect of the tropical Pacific SST. J. Climate, 7 , 14031415.

    • Search Google Scholar
    • Export Citation
  • Clark, C. O., J. E. Cole, and P. J. Webster, 2000: Indian Ocean SST and Indian summer rainfall: Predictive relationships and their decadal variability. J. Climate, 13 , 25032519.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., 1998: Interannual variations of Indian summer monsoon in a GCM: External conditions versus internal feedbacks. J. Climate, 11 , 501522.

    • Search Google Scholar
    • Export Citation
  • Ju, J., and J. M. Slingo, 1995: The Asian summer monsoon and ENSO. Quart. J. Roy. Meteor. Soc, 121 , 11331168.

  • Kawamura, R., 1998: A possible mechanism of the Asian summer monsoon–ENSO coupling. J. Meteor. Soc. Japan, 76 , 10091027.

  • Kawamura, R., T. Matsuura, and I. Satoshi, 2001: Role of equatorially asymmetric sea surface temperature anomalies in the Indian Ocean in the Asian summer monsoon and El Niño–Southern Oscillation coupling. J. Geophys. Res, 106 , 46814693.

    • Search Google Scholar
    • Export Citation
  • Kinter III, J. L., and Coauthors, 1997: The COLA atmosphere–biosphere general circulation model. Volume 1: Formulation. COLA Tech. Rep. 51, 46 pp. [Available from COLA, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and J. Shukla, 2002: Interactive coupled ensemble: A new coupling strategy for CGCMs. Geophys. Res. Lett.,29, 1367, doi:10.1029/2002GL014834.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., J. Shukla, B. Huang, Z. Zhu, and E. K. Schneider, 1997: Multiseasonal prediction with a coupled tropical ocean–global atmosphere system. Mon. Wea. Rev, 125 , 789808.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., Y. Fan, and E. K. Schneider, 2002: The COLA global coupled and anomaly coupled ocean–atmosphere GCM. J. Climate, 15 , 23012320.

    • Search Google Scholar
    • Export Citation
  • Kitoh, A., 1992: Simulated interannual variations of the Indo-Australian monsoons. J. Meteor. Soc. Japan, 70 , 563583.

  • Klein, S. A., B. J. Sode, and N-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12 , 917932.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and B. P. Kirtman, 2003: Variability of the Indian Ocean: Relation to monsoon and ENSO. Quart. J. Roy. Meteor. Soc, 129 , 16231646.

    • Search Google Scholar
    • Export Citation
  • Krishnan, R., M. Mujumdar, V. Vaidya, K. V. Ramesh, and V. Satyan, 2003: The abnormal Indian summer monsoon of 2000. J. Climate, 16 , 11771194.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 1998: Specification of regional sea surface temperatures in atmospheric general circulation model simulations. J. Geophys. Res, 103 , 89018907.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., and W. R. Bua, 1998: Mechanisms of monsoon–Southern Oscillation coupling: Insights from GCM experiments. Climate Dyn, 14 , 759799.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., K-M. Kim, and S. Yang, 2000: Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Climate, 13 , 24612482.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate, 13 , 42874309.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16 , 320.

  • Lau, N-C., and M. J. Nath, 2004: Coupled GCM simulation of atmosphere– ocean variability associated with zonally asymmetric SST changes in the tropical Indian Ocean. J. Climate, 17 , 245265.

    • Search Google Scholar
    • Export Citation
  • Li, T., and Y. Zhang, 2002: Processes that determine the quasi-biennial and lower-frequency variability of the South Asian monsoon. J. Meteor. Soc. Japan, 80 , 11491163.

    • Search Google Scholar
    • Export Citation
  • Loschnigg, J., G. A. Meehl, P. J. Webster, J. M. Arblaster, and G. P. Compo, 2003: The Asian monsoon, the tropospheric biennial oscillation, and the Indian Ocean zonal mode in the NCAR CSM. J. Climate, 16 , 16171642.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and J. M. Arblaster, 1998: The Asian–Australian monsoon and El Niño–Southern Oscillation in the NCAR Climate System Model. J. Climate, 11 , 13561385.

    • Search Google Scholar
    • Export Citation
  • Miyakoda, K., A. Navarra, and M. N. Ward, 1999: Tropical-wide teleconnection and oscillation. II: The ENSO-monsoon system. Quart. J. Roy. Meteor. Soc, 125 , 29372963.

    • Search Google Scholar
    • Export Citation
  • Mooley, D. A., and B. Parthasarathy, 1983: Indian summer monsoon and El Niño. Pure Appl. Geophys, 121 , 339352.

  • Navarra, A., M. N. Ward, and K. Miyakoda, 1999: Tropical-wide teleconnection and oscillation. I: Teleconnection indices and type I/type II states. Quart. J. Roy. Meteor. Soc, 125 , 29092935.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., 1994: On the dynamical basis for the Asian summer monsoon rainfall–El Niño relationship. J. Climate, 7 , 17501771.

  • Pacanowski, R. C., and S. M. Griffies, 1998: MOM 3.0 manual. NOAA, 638 pp. [Available from NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08542.].

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., C. Brankovic, P. Viterbo, and M. J. Miller, 1992: Modeling interannual variations of summer monsoons. J. Climate, 5 , 399417.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1983: The relationship between the eastern Pacific sea surface temperature and rainfall over India and Sri Lanka. Mon. Wea. Rev, 111 , 517528.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev, 115 , 16061626.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401 , 360363.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., M. A. Alexander, and H. H. Hendon, 2004: Remote response of the Indian Ocean to interannual SST variations in the tropical Pacific. J. Climate, 17 , 362372.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1975: Effect of Arabian sea-surface temperature anomaly on Indian summer monsoon: A numerical experiment with the GFDL model. J. Atmos. Sci, 32 , 503511.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and B. M. Misra, 1977: Relationships between sea surface temperature and wind speed over the central Arabian Sea, and the monsoon rainfall over India. Mon. Wea. Rev, 105 , 9981002.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and D. A. Paolino, 1983: The Southern Oscillation and long-range forecasting of the summer monsoon anomalies over India. Mon. Wea. Rev, 111 , 18301837.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and J. M. Wallace, 1983: Numerical simulation of the atmospheric response to equatorial sea surface temperature anomalies. J. Atmos. Sci, 40 , 16131630.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., and H. Annamalai, 2000: 1997: The El Niño of the century and the response of the Indian summer monsoon. Mon. Wea. Rev, 128 , 17781797.

    • Search Google Scholar
    • Export Citation
  • Soman, M. K., and J. M. Slingo, 1997: Sensitivity of the Asian summer monsoon to aspects of sea-surface temperature anomalies in the tropical Pacific Ocean. Quart. J. Roy. Meteor. Soc, 123 , 309336.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., and T. N. Palmer, 1996: Interannual tropical rainfall variability in general circulation model simulations associated with the Atmospheric Model Intercomparison Project. J. Climate, 9 , 27272750.

    • Search Google Scholar
    • Export Citation
  • Venzke, S., M. Latif, and A. Villwock, 2000: The coupled GCM ECHO-2. Part II: Indian Ocean response to ENSO. J. Climate, 13 , 13711383.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and K-M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Climate, 14 , 40734090.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on the Asian–Australian monsoon variation. J. Climate, 16 , 11951211.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc, 118 , 877926.

  • Wu, R., and B. P. Kirtman, 2003: On the impacts of the Indian summer monsoon on ENSO in a coupled GCM. Quart. J. Roy. Meteor. Soc, 129 , 34393468.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2004: The tropospheric biennial oscillation of the monsoon–ENSO system in an interactive ensemble coupled GCM. J. Climate, 17 , 16231640.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc, 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Yang, S., and K-M. Lau, 1998: Influence of sea surface temperature and ground wetness on Asian summer monsoon. J. Climate, 11 , 32303246.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., and B. P. Kirtman, 2002: The characteristics of signal versus noise SST variability in the North Pacific and the tropical Pacific Ocean. COLA Tech. Rep. 128, 20 pp. [Available from COLA, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

    • Search Google Scholar
    • Export Citation
  • Yu, L-S., and M. M. Reinecker, 1999: Mechanisms for the Indian Ocean warming during the 1997–98 El Niño. Geophys. Res. Lett, 26 , 735738.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9509 324 35
PDF Downloads 4681 168 29

Impacts of the Indian Ocean on the Indian Summer Monsoon–ENSO Relationship

Renguang WuCenter for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by Renguang Wu in
Current site
Google Scholar
PubMed
Close
and
Ben P. KirtmanSchool for Computational Sciences, George Mason University, Fairfax, Virginia, and Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by Ben P. Kirtman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the impacts of the Indian Ocean on the relationship between the Indian summer monsoon and the El Niño–Southern Oscillation (ENSO) through numerical simulations with a coupled atmosphere–ocean general circulation model and atmospheric general circulation model (AGCM) experiments with specified sea surface temperature (SST) and surface heat flux (SHF) forcing. Previous studies have shown that this particular coupled model captures many aspects of the observed Indian summer monsoon–ENSO relationship. However, it is found that, when the Indian Ocean is decoupled from the atmosphere, the Indian monsoon–ENSO relationship reverses. This change is linked to the relationships between surface evaporation, surface wind, and SST in the north Indian Ocean. In the coupled case, surface evaporation anomalies are positively correlated with surface wind anomalies during April–June and are of the same sign as SST anomalies during July–September. In the decoupled Indian Ocean case, surface evaporation anomalies are of the same sign as surface wind anomalies during the entire April–September period.

Numerical experiments with an AGCM were performed with SST or SHF anomalies specified in the tropical Indian–Pacific Ocean, tropical Pacific Ocean only, and tropical Indian Ocean only. These experiments confirm the importance of local coupled air–sea feedback in the Indian Ocean for a proper simulation of the Indian monsoon–ENSO relationship.

Corresponding author address: Dr. Renguang Wu, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705. Email: renguang@cola.iges.org

Abstract

This study investigates the impacts of the Indian Ocean on the relationship between the Indian summer monsoon and the El Niño–Southern Oscillation (ENSO) through numerical simulations with a coupled atmosphere–ocean general circulation model and atmospheric general circulation model (AGCM) experiments with specified sea surface temperature (SST) and surface heat flux (SHF) forcing. Previous studies have shown that this particular coupled model captures many aspects of the observed Indian summer monsoon–ENSO relationship. However, it is found that, when the Indian Ocean is decoupled from the atmosphere, the Indian monsoon–ENSO relationship reverses. This change is linked to the relationships between surface evaporation, surface wind, and SST in the north Indian Ocean. In the coupled case, surface evaporation anomalies are positively correlated with surface wind anomalies during April–June and are of the same sign as SST anomalies during July–September. In the decoupled Indian Ocean case, surface evaporation anomalies are of the same sign as surface wind anomalies during the entire April–September period.

Numerical experiments with an AGCM were performed with SST or SHF anomalies specified in the tropical Indian–Pacific Ocean, tropical Pacific Ocean only, and tropical Indian Ocean only. These experiments confirm the importance of local coupled air–sea feedback in the Indian Ocean for a proper simulation of the Indian monsoon–ENSO relationship.

Corresponding author address: Dr. Renguang Wu, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705. Email: renguang@cola.iges.org

Save