• Alves, J. O. S., , K. Haines, , and D. L. T. Anderson, 2001: Sea level assimilation experiments in the tropical Pacific. J. Phys. Oceanogr, 31 , 305323.

    • Search Google Scholar
    • Export Citation
  • Ballabrera-Poy, J., , A. J. Busalacchi, , and R. Murtugudde, 2001: Application of a reduced-order Kalman filter to initialize a coupled atmosphere–ocean model: Impact on the prediction of El Niño. J. Climate, 14 , 17201737.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., , M. K. Davey, , and D. L. T. Anderson, 1995: Decadal and seasonal dependence of ENSO prediction skill. J. Climate, 8 , 27052715.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J. Atmos. Sci, 45 , 28892919.

    • Search Google Scholar
    • Export Citation
  • Blanchet, I., , C. Frankignoul, , and M. A. Cane, 1997: A comparison of adaptive Kalman filters for a tropical Pacific Ocean model. Mon. Wea. Rev, 125 , 4058.

    • Search Google Scholar
    • Export Citation
  • Chen, D., , M. A. Cane, , S. E. Zebiak, , and A. Kaplan, 1998: The impact of sea level data assimilation on the Lamont model prediction of the 1997/98 El Niño. Geophys. Res. Lett, 25 , 28372840.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., , D. S. Battisti, , T. N. Palmer, , J. Barsugli, , and E. S. Sarachik, 1997: A study of the predictability of tropical Pacific SST in a coupled atmosphere–ocean model using singular vector analysis: The role of the annual cycle and ENSO cycle. Mon. Wea. Rev, 125 , 831845.

    • Search Google Scholar
    • Export Citation
  • Derber, J., , and A. Rosati, 1989: Global oceanic data assimilation system. J. Phys. Oceanogr, 19 , 13331348.

  • Errico, R. M., , and T. Vukicevic, 1992: Sensitivity analysis using an adjoint of the PSU–NCAR Mesoscale Model. Mon. Wea. Rev, 120 , 16441659.

    • Search Google Scholar
    • Export Citation
  • Fischer, M., , M. Latif, , M. Flügel, , and M. Ji, 1997: The impact of data assimilation on ENSO simulations and predictions. Mon. Wea. Rev, 125 , 819829.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., , and J. Shukla, 1991: Predictability of a coupled ocean–atmosphere model. J. Climate, 4 , 322.

  • Hao, Z., , and M. Ghil, 1994: Data assimilation in a simple tropical ocean model with wind stress errors. J. Phys. Oceanogr, 24 , 21112128.

    • Search Google Scholar
    • Export Citation
  • Ji, M., , and A. Leetmaa, 1997: Impact of data assimilation on ocean initialization and El Niño prediction. Mon. Wea. Rev, 125 , 742753.

    • Search Google Scholar
    • Export Citation
  • Ji, M., , A. Leetmaa, , and J. Derber, 1995: An ocean analysis system for seasonal to interannual climate studies. Mon. Wea. Rev, 123 , 460481.

    • Search Google Scholar
    • Export Citation
  • Ji, M., , D. W. Behringer, , and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part II: The coupled model. Mon. Wea. Rev, 126 , 10221034.

    • Search Google Scholar
    • Export Citation
  • Johnson, S. D., , D. S. Battisti, , and E. S. Sarachik, 2000: Empirically derived Markov models and prediction of tropical Pacific sea surface temperature anomalies. J. Climate, 13 , 317.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., 1993: On the dependence of hindcast skill on ocean thermodynamics in a coupled ocean–atmosphere model. J. Climate, 6 , 20122033.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., , A. M. Moore, , and N. R. Smith, 1995: Assimilation of subsurface thermal data into a simple ocean model for the initialization of an intermediate tropical coupled ocean–atmosphere forecast model. Mon. Wea. Rev, 123 , 31033113.

    • Search Google Scholar
    • Export Citation
  • Latif, M., , and N. E. Graham, 1992: How much predictive skill is contained in the thermal structure of an oceanic GCM? J. Phys. Oceanogr, 22 , 951962.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res, 103 , 1437514393.

  • McPhaden, M. J., 2003: Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys. Res. Lett.,30, 1480, doi:10.1029/2003GL016872.

    • Search Google Scholar
    • Export Citation
  • Miller, R. N., 1990: Tropical data assimilation experiments with simulated data: The impact of the tropical ocean and global atmosphere thermal array for the ocean. J. Geophys. Res, 95 , 1146111482.

    • Search Google Scholar
    • Export Citation
  • Miller, R. N., , A. J. Busalacchi, , and E. C. Hackert, 1995: Sea surface topography fields of the tropical Pacific from data assimilation. J. Geophys. Res, 100 , 1338913426.

    • Search Google Scholar
    • Export Citation
  • Morss, R. E., , and D. S. Battisti, 2004: Designing efficient observing networks for ENSO prediction. J. Climate, 17 , 30743089.

  • Perigaud, C. M., , C. Cassou, , B. Dewitte, , L-L. Fu, , and J. D. Neelin, 2000: Using data and intermediate coupled models for seasonal-to-interannual forecasts. Mon. Wea. Rev, 128 , 30253049.

    • Search Google Scholar
    • Export Citation
  • Rosati, A., , K. Miyakoda, , and R. Gudgel, 1997: The impact of ocean initial conditions on ENSO forecasting with a coupled model. Mon. Wea. Rev, 125 , 754772.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., , B. Huang, , Z. Zhu, , D. G. DeWitt, , J. L. Kinter III, , B. P. Kirtman, , and J. Shukla, 1999: Ocean data assimilation, initialization, and predictions of ENSO with a coupled GCM. Mon. Wea. Rev, 127 , 11871207.

    • Search Google Scholar
    • Export Citation
  • Segschneider, J., , D. L. T. Anderson, , and T. N. Stockdale, 2000: Toward the use of altimetry for operational seasonal forecasting. J. Climate, 13 , 31153138.

    • Search Google Scholar
    • Export Citation
  • Segschneider, J., , D. L. T. Anderson, , J. Vialard, , M. Balmaseda, , T. N. Stockdale, , A. Troccoli, , and K. Haines, 2001: Initialization of seasonal forecasts assimilating sea level and temperature observations. J. Climate, 14 , 42924307.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , A. G. Barnston, , M. Ji, , and M. Chelliah, 1995: The impact of Pacific Ocean subsurface data on operational prediction of tropical Pacific SST at the NCEP. Wea. Forecasting, 10 , 708714.

    • Search Google Scholar
    • Export Citation
  • Sun, C., , Z. Hao, , M. Ghil, , and J. D. Neelin, 2002: Data assimilation for a coupled ocean–atmosphere model. Part I: Sequential state estimation. Mon. Wea. Rev, 130 , 10731099.

    • Search Google Scholar
    • Export Citation
  • Syu, H-H., , and J. D. Neelin, 2000: ENSO in a hybrid coupled model. Part II: Prediction with piggyback data assimilation. Climate Dyn, 16 , 3548.

    • Search Google Scholar
    • Export Citation
  • Thompson, C. J., 1998a: Initial conditions for optimal growth in a coupled ocean–atmosphere model of ENSO. J. Atmos. Sci, 55 , 537557.

    • Search Google Scholar
    • Export Citation
  • Thompson, C. J., 1998b: A linear, stochastic, dynamical model of El Niño/Southern Oscillation. Ph.D. thesis, University of Washington, 235 pp.

    • Search Google Scholar
    • Export Citation
  • Thompson, C. J., , and D. S. Battisti, 2000: A linear stochastic dynamical model of ENSO. Part I: Model development. J. Climate, 13 , 28182832.

    • Search Google Scholar
    • Export Citation
  • Thompson, C. J., , and D. S. Battisti, 2001: A linear stochastic dynamical model of ENSO. Part II: Analysis. J. Climate, 14 , 445466.

  • van Oldenborgh, G. J., , G. Burgers, , S. Venzke, , C. Eckert, , and R. Giering, 1999: Tracking down the ENSO delayed oscillator with an adjoint OGCM. Mon. Wea. Rev, 127 , 14771495.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., , J. M. Wallace, , and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16 , 26682675.

    • Search Google Scholar
    • Export Citation
  • Wang, G., , R. Kleeman, , N. Smith, , and F. Tseitkin, 2002: The BMRC coupled general circulation model ENSO forecast system. Mon. Wea. Rev, 130 , 975991.

    • Search Google Scholar
    • Export Citation
  • Wright, P. B., 1985: The Southern Oscillation: An ocean–atmosphere feedback system? Bull. Amer. Meteor. Soc, 66 , 398412.

  • Xue, Y., , M. A. Cane, , S. E. Zebiak, , and M. B. Blumenthal, 1994: On the prediction of ENSO: A study with a low-order Markov model. Tellus, 46A , 512528.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., , A. Leetmaa, , and M. Ji, 2000: ENSO prediction with Markov models: The impact of sea level. J. Climate, 13 , 849871.

  • Zebiak, S. E., , and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev, 115 , 22622278.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 90 90 1
PDF Downloads 1 1 0

Evaluating Observing Requirements for ENSO Prediction: Experiments with an Intermediate Coupled Model

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
  • | 2 Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

The Tropical Atmosphere Ocean (TAO) array of moored buoys in the tropical Pacific Ocean is a major source of data for understanding and predicting the El Niño–Southern Oscillation (ENSO). Despite the importance of the TAO array, limited work has been performed to date on the number and locations of observations required to predict ENSO effectively. To address this issue, this study performs a series of observing system simulation experiments (OSSEs) with a linearized intermediate coupled ENSO model, stochastically forced. ENSO forecasts are simulated for a number of observing network configurations, and forecast skill averaged over 1000 years of simulated ENSO events is compared.

The experiments demonstrate that an OSSE framework can be used with a linear, stochastically forced ENSO model to provide useful information about requirements for ENSO prediction. To the extent that the simplified model dynamics represent ENSO dynamics accurately, the experiments also suggest which types of observations in which regions are most important for ENSO prediction. The results indicate that, using this model and experimental setup, subsurface ocean observations are relatively unimportant for ENSO prediction when good information about sea surface temperature (SST) is available; adding subsurface observations primarily improves forecasts initialized in late summer. For short lead-time (1–2 month) forecasts, observations within approximately 3° of the equator are most important for skillful forecasts, while for longer lead-time forecasts, forecast skill is increased by including information at higher latitudes. For forecasts longer than a few months, the most important region for observations is the eastern equatorial Pacific, south of the equator; a secondary region of importance is the western equatorial Pacific. These regions correspond to those where the leading singular vector for the ENSO model has a large amplitude. In a continuation of this study, these results will be used to develop efficient observing networks for forecasting ENSO in this system.

Corresponding author address: Dr. Rebecca E. Morss, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: morss@ucar.edu

Abstract

The Tropical Atmosphere Ocean (TAO) array of moored buoys in the tropical Pacific Ocean is a major source of data for understanding and predicting the El Niño–Southern Oscillation (ENSO). Despite the importance of the TAO array, limited work has been performed to date on the number and locations of observations required to predict ENSO effectively. To address this issue, this study performs a series of observing system simulation experiments (OSSEs) with a linearized intermediate coupled ENSO model, stochastically forced. ENSO forecasts are simulated for a number of observing network configurations, and forecast skill averaged over 1000 years of simulated ENSO events is compared.

The experiments demonstrate that an OSSE framework can be used with a linear, stochastically forced ENSO model to provide useful information about requirements for ENSO prediction. To the extent that the simplified model dynamics represent ENSO dynamics accurately, the experiments also suggest which types of observations in which regions are most important for ENSO prediction. The results indicate that, using this model and experimental setup, subsurface ocean observations are relatively unimportant for ENSO prediction when good information about sea surface temperature (SST) is available; adding subsurface observations primarily improves forecasts initialized in late summer. For short lead-time (1–2 month) forecasts, observations within approximately 3° of the equator are most important for skillful forecasts, while for longer lead-time forecasts, forecast skill is increased by including information at higher latitudes. For forecasts longer than a few months, the most important region for observations is the eastern equatorial Pacific, south of the equator; a secondary region of importance is the western equatorial Pacific. These regions correspond to those where the leading singular vector for the ENSO model has a large amplitude. In a continuation of this study, these results will be used to develop efficient observing networks for forecasting ENSO in this system.

Corresponding author address: Dr. Rebecca E. Morss, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: morss@ucar.edu

Save