• Cavalcanti, I. F. A., and Coauthors, 2002: Global climatological features in a simulation using the CPTEC–COLA AGCM. J. Climate, 15 , 29652988.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1975: Dynamics of deserts and drought in the Sahel. Quart. J. Roy. Meteor. Soc, 101 , 193202.

  • Charney, J. G., , W. J. Quirk, , S. H. Chow, , and J. Kornfield, 1977: A comparative study of the effects of albedo change on drought in semi-arid regions. J. Atmos. Sci, 34 , 13661385.

    • Search Google Scholar
    • Export Citation
  • CONAMA, cited 1997: Resolução n;mc 238, de 22 de dezembro de 1997—Política Nacional de Controle da Desertificação (in Portuguese). [Available online at http://www.mma.gov.br/port/conama/ res/res97/res23897.html.].

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1992: Changes in land use. Climate System Modeling, K. E. Trenberth, Ed., Cambridge University Press, 689– 701.

  • Dirmeyer, P. A., , and J. Shukla, 1996: The effect on regional and global climate of expansion of the world's deserts. Quart. J. Roy. Meteor. Soc, 122 , 451482.

    • Search Google Scholar
    • Export Citation
  • Dorman, J. L., , and P. J. Sellers, 1989: A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere model (SiB). J. Appl. Meteor, 28 , 833855.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D. G., , H. P. Melo, , F. R. Rodrigues Neto, , P. J. S. Nascimento, , and V. Rodrigues, 1994: Avaliação do quadro de desertificação no Nordeste do Brasil: Diagnósticos e perspectivas (in Portuguese). Proc. National Conf. on Desertification, Fortaleza, Brazil, Fundação Grupo Esquel Brasil, 7–55. [Available from Fundação Grupo Esquel Brasil, SAS Quadra 06 Block “K” - Ed. Belvedere - Sala 801-A, 70070-915, Brasília, DF, Brazil.].

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc, 106 , 447462.

  • Hastenrath, S., , and L. Heller, 1977: Dynamics of climatic hazards in northeast Brazil. Quart. J. Roy. Meteor. Soc, 103 , 7792.

  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. Academic Press, 511 pp.

  • Kinter III, J. L., and Coauthors, 1997: The COLA atmosphere–biosphere general circulation model. Vol. 1: Formulation. COLA Tech. Rep. 51, Calverton, MD, 46 pp.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., , J. H. Kim, , and Y. Sud, 1996: Intercomparison of hydrologic processes in AMIP GCMs. Bull. Amer. Meteor. Soc, 77 , 22092227.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., 2003: Assessment of regional seasonal rainfall predictability using the CPTEC/COLA atmospheric GCM. Climate Dyn, 21 , 459475.

    • Search Google Scholar
    • Export Citation
  • McGuffie, K., , and A. Henderson-Sellers, 2001: Forty years of numerical climate modelling. Int. J. Climatol, 21 , 10671109.

  • MMA, 2000: Desertification. Ministry of the Environment National Rep., Brasília, Brazil, 20 pp. [Available from Ministério do Meio Ambiente, Secretaria de Recursos Hídricos, SGAN Q 601 Lote 01 - Ed. Sede CODEVASF - 40 andar - Sala 417, 70830-901, Brasília, DF, Brazil.].

    • Search Google Scholar
    • Export Citation
  • Nobre, C. A., , and L. C. B. Molion, 1988: The effects of climatic variations on agriculture in Northeast Brazil: the climatology of droughts and drought prediction. The Impact of Climatic Variations on Agriculture: Assessments in Semi-Arid Regions, M. L. Parry, T. R. Carter, and N. T. Konijin, Eds., Kluwer Academic, 305–323.

    • Search Google Scholar
    • Export Citation
  • Nobre, C. A., , P. J. Sellers, , and J. Shukla, 1991: Amazonian deforestation and regional climate change. J. Climate, 4 , 957988.

  • Oyama, M. D., , and C. A. Nobre, 2003: A new climate-vegetation equilibrium state for Tropical South America. Geophys. Res. Lett.,30, 2199, doi:10.1029/2003GL018600.

    • Search Google Scholar
    • Export Citation
  • Oyama, M. D., , E. J. P. Rocha, , and C. A. Nobre, 2000: Estudo preliminar sobre o tempo de “spin-up” da umidade do solo no Modelo Climático do CPTEC (in Portuguese). Proc. 11th Brazilian Congress of Meteorology, Rio de Janeiro, Brazil, Sociedade Brasileira de Meteorologia, 1085–1094. [Available from Instituto Nacional de Pesquisas Espaciais, Centro de Previsão de Tempo e Estudos Climáticos, Rod. Presidente Dutra, km 40, 12630-000, Cachoeira Paulista, SP, Brazil.].

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , Y. Rudich, , and R. Lahav, 2001: Desert dust suppressing precipitation: A possible desertification feedback loop. PNAS, 98 , 59755980.

    • Search Google Scholar
    • Export Citation
  • , I. B., , G. A. Fotius, , and G. R. Riché, 1994: Degradação ambiental e reabilitação natural no trópico semi-árido brasileiro (in Portuguese). Proc. National Conf. on Desertification, Fortaleza, Brazil, Fundação Grupo Esquel Brasil, 310–331. [Available from Fundação Grupo Esquel Brasil, SAS Quadra 06 Bloco “K” -Ed. Belvedere - Sala 801-A, 70070-915, Brasília, DF, Brazil.].

    • Search Google Scholar
    • Export Citation
  • Sato, N., , P. J. Sellers, , D. A. Randall, , E. K. Schneider, , J. Shukla, , J. L. Kinter III, , Y. Y. Hou, , and E. Albertazzi, 1989: Implementing the Simple Biosphere model (SiB) in a General Circulation Model: Methodology and results. NASA Contractor Rep. 185509, 76 pp.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., 1992: Changes in land use. Climate System Modeling, K. E. Trenberth, Ed., Cambridge University Press, 451–490.

  • Shukla, J., , and Y. Mintz, 1982: Influence of land-surface evaporation on Earth's climate. Science, 215 , 14981501.

  • Silva, V. P. R., , A. A. Correia, , and M. S. Coelho, 1998: Time trend analysis of the rainfall series in the Northeast Brazil (in Portuguese). Rev. Bras. Eng. Agríc. Ambiental, 2 , 111114.

    • Search Google Scholar
    • Export Citation
  • Skidmore, E. L., 1986: Soil erosion by wind: An overview. Physics of Desertification, F. El-Baz and M. H. A. Hassan, Eds., Martinus Nijhoff, 261–273.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Sud, Y. C., , and M. Fennessy, 1982: A study of the influence of surface albedo on July circulation in semi-arid regions using the GLAS GCM. J. Climatol, 2 , 105125.

    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., , and M. Fennessy, 1984: Influence of evaporation in semi-arid regions on the July circulation: A numerical study. J. Climatol, 4 , 383398.

    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., , J. Shukla, , and Y. Mintz, 1988: Influence of land surface roughness on atmospheric circulation and precipitation: A sensitivity study with a general circulation model. J. Appl. Meteor, 27 , 10361054.

    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., , W. C. Chao, , and G. K. Walker, 1993: Dependence of rainfall on vegetation: Theoretical considerations, simulation experiments, observations and inferences from simulated atmospheric sounding. J. Arid Environ, 25 , 518.

    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., , G. K. Walker, , J.-H. Kim, , G. E. Liston, , P. J. Sellers, , and W. K.-M. Lau, 1996: Biogeophysical consequences of a tropical deforestation scenario: A GCM simulation study. J. Climate, 9 , 32253247.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., , and J. Shukla, 1993: The influence of land surface properties on Sahel climate. Part 1: Desertification. J. Climate, 6 , 22322245.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., , P. J. Sellers, , J. L. Kinter, , and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4 , 345364.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., , R. E. Dickinson, , and X. Zeng, 1996: Climatic impact of Amazon deforestation—A mechanistic model study. J. Climate, 9 , 859883.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 191 191 9
PDF Downloads 98 98 11

Climatic Consequences of a Large-Scale Desertification in Northeast Brazil: A GCM Simulation Study

View More View Less
  • 1 Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, Cachoeira Paulista, São Paulo, Brazil
© Get Permissions
Restricted access

Abstract

The climatic impacts of a large-scale desertification in northeast Brazil (NEB) are assessed by using the Center for Weather Forecasting and Climate Studies–Center for Ocean–Land–Atmosphere Studies (CPTEC–COLA) AGCM. Two numerical runs are performed. In the control run, NEB is covered by its natural vegetation (most of NEB is covered by a xeromorphic vegetation known as caatinga); in the desertification run, NEB vegetation is changed to desert (bare soil). Each run consists of five 1-yr numerical integrations. The results for NEB wet season (March–May) are analyzed. Desertification results in hydrological cycle weakening: precipitation, evapotranspiration, moisture convergence, and runoff decrease. Surface net radiation decreases and this reduction is almost evenly divided between sensible and latent heat flux. Atmospheric diabatic heating decreases and subsidence anomalies confined at lower atmospheric levels are found. The climatic impacts result from the cooperative action of feedback processes related to albedo increase, plant transpiration suppression, and roughness length decrease. On a larger scale, desertification leads to precipitation increase in the oceanic belt close to the northernmost part of NEB (NNEB). In the NEB–NNEB dipole, the anomalies of vertical motion and atmospheric circulation are confined to lower atmospheric levels, that is, 850–700 hPa. At these levels, circulation anomalies resemble the linear baroclinic response of a shallow atmospheric layer (850–700 hPa) to a tropical heat sink placed over NEB at the middle-layer level. Therefore, NEB climate does show sensitivity to a vegetation change to desert. The present work shows the possibility of significant and pronounced climate impacts, on both regional and large scales, if the environmental degradation in NEB continues unchecked.

Current affiliation: Centro Técnico Aeroespacial, Instituto de Aeronáutica e Espaço, São José dos Campos, São Paulo, Brazil

Corresponding author address: Dr. Marcos Daisuke Oyama, Centro Técnico Aeroespacial, Instituto de Aeronáutica e Espaço, Divisão de Ciências Atmosféricas, Pça Marechal Eduardo Gomes, 50, Vila das Acácias, 12228-904, São José dos Campos, SP, Brazil. Email: oyama@iae.cta.br

Abstract

The climatic impacts of a large-scale desertification in northeast Brazil (NEB) are assessed by using the Center for Weather Forecasting and Climate Studies–Center for Ocean–Land–Atmosphere Studies (CPTEC–COLA) AGCM. Two numerical runs are performed. In the control run, NEB is covered by its natural vegetation (most of NEB is covered by a xeromorphic vegetation known as caatinga); in the desertification run, NEB vegetation is changed to desert (bare soil). Each run consists of five 1-yr numerical integrations. The results for NEB wet season (March–May) are analyzed. Desertification results in hydrological cycle weakening: precipitation, evapotranspiration, moisture convergence, and runoff decrease. Surface net radiation decreases and this reduction is almost evenly divided between sensible and latent heat flux. Atmospheric diabatic heating decreases and subsidence anomalies confined at lower atmospheric levels are found. The climatic impacts result from the cooperative action of feedback processes related to albedo increase, plant transpiration suppression, and roughness length decrease. On a larger scale, desertification leads to precipitation increase in the oceanic belt close to the northernmost part of NEB (NNEB). In the NEB–NNEB dipole, the anomalies of vertical motion and atmospheric circulation are confined to lower atmospheric levels, that is, 850–700 hPa. At these levels, circulation anomalies resemble the linear baroclinic response of a shallow atmospheric layer (850–700 hPa) to a tropical heat sink placed over NEB at the middle-layer level. Therefore, NEB climate does show sensitivity to a vegetation change to desert. The present work shows the possibility of significant and pronounced climate impacts, on both regional and large scales, if the environmental degradation in NEB continues unchecked.

Current affiliation: Centro Técnico Aeroespacial, Instituto de Aeronáutica e Espaço, São José dos Campos, São Paulo, Brazil

Corresponding author address: Dr. Marcos Daisuke Oyama, Centro Técnico Aeroespacial, Instituto de Aeronáutica e Espaço, Divisão de Ciências Atmosféricas, Pça Marechal Eduardo Gomes, 50, Vila das Acácias, 12228-904, São José dos Campos, SP, Brazil. Email: oyama@iae.cta.br

Save