Anomaly Nesting: A Methodology to Downscale Seasonal Climate Simulations from AGCMs

Vasubandhu Misra Center for Ocean–Land–Atmosphere Studies, Institute of Global Environment and Society, Inc., Calverton, Maryland

Search for other papers by Vasubandhu Misra in
Current site
Google Scholar
PubMed
Close
and
Masao Kanamitsu Experimental Climate Prediction Center, University of California, San Diego, La Jolla, California

Search for other papers by Masao Kanamitsu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this paper a methodology is proposed to downscale coarse-resolution atmospheric general circulation model (AGCM) seasonal simulations. Anomaly nesting involves replacing the climatology of the driving AGCM with observed (in this case the National Centers for Environmental Prediction reanalysis) climatology at the lateral boundaries of the nested regional climate model (the regional spectral model). In this study the methodology is tested over South America and the neighboring ocean basins. A comparison of the austral summer seasonal simulation with the conventional way of nesting, namely driving the regional model with full AGCM forcing, reveals that substantial gains in the deterministic skill are realized through anomaly nesting. It is also shown that the high-frequency variance (at 3–30- and 30–40-day time scales) is more realistic from the anomaly nesting procedure.

Corresponding author address: Vasubandu Misra, Center for Ocean–Land–Atmosphere Studies, Institute of Global Environment and Society, Inc., 4041 Powder Mill Rd., Suite 302, Calverton, MD 20705. Email: misra@cola.iges.org

Abstract

In this paper a methodology is proposed to downscale coarse-resolution atmospheric general circulation model (AGCM) seasonal simulations. Anomaly nesting involves replacing the climatology of the driving AGCM with observed (in this case the National Centers for Environmental Prediction reanalysis) climatology at the lateral boundaries of the nested regional climate model (the regional spectral model). In this study the methodology is tested over South America and the neighboring ocean basins. A comparison of the austral summer seasonal simulation with the conventional way of nesting, namely driving the regional model with full AGCM forcing, reveals that substantial gains in the deterministic skill are realized through anomaly nesting. It is also shown that the high-frequency variance (at 3–30- and 30–40-day time scales) is more realistic from the anomaly nesting procedure.

Corresponding author address: Vasubandu Misra, Center for Ocean–Land–Atmosphere Studies, Institute of Global Environment and Society, Inc., 4041 Powder Mill Rd., Suite 302, Calverton, MD 20705. Email: misra@cola.iges.org

Save
  • Alpert, J. C., M. Kanamitsu, P. M. Caplan, J. G. Sela, G. H. White, and E. Kalnay, 1988: Mountain induced gravity wave drag parameterization in the NMC medium-range forecast model. Preprints, Eighth Conf. on Numerical Weather Prediction, Baltimore, MD, Amer. Meteor. Soc., 726–733.

    • Search Google Scholar
    • Export Citation
  • Altshuler, E., M. Fennessy, J. Shukla, H. Juang, E. Rogers, K. Mitchell, and M. Kanamitsu, 2002: Seasonal simulations over North America with a GCM and three regional models. COLA Tech. Rep. 115, 60 pp.

    • Search Google Scholar
    • Export Citation
  • Brankovic, C., and T. N. Palmer, 1997: Atmospheric seasonal predictability and estimates of ensemble size. Mon. Wea. Rev, 125 , 859874.

    • Search Google Scholar
    • Export Citation
  • Buchmann, J., J. Paegleand, and L. E. Buja, 1990: The effect of tropical Atlantic heating anomalies upon GCM rain forecasts over the Americas. J. Climate, 3 , 189208.

    • Search Google Scholar
    • Export Citation
  • Chou, M-D., 1992: A solar radiation model for use in climate studies. J. Atmos. Sci, 49 , 762772.

  • Davies, R., 1982: Documentation of the solar radiation parameterization in the GLAS climate model. NASA Tech. Memo. 83961, 57 pp.

  • Denis, B., R. Laprise, D. Caya, and J. Cote, 2002: Downscaling ability of one-way nested regional climate models: The Big-Brother Experiment. Climate Dyn, 18 , 627646.

    • Search Google Scholar
    • Export Citation
  • DeWitt, D. G., and E. K. Schneider, 1997: The earth radiation budget as simulated by the COLA GCM. COLA Rep. 35, 39 pp. [Available from COLA, 4041 Powder Mill Rd., Suite 302, Calverton, MD 20705.].

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and F. J. Zeng, 1997: A two dimensional implementation of the Simple Biosphere (SiB) model. COLA Tech. Rep. 48, 30 pp. [Available from Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and F. J. Zeng, 1999: An update to the distribution and treatment of vegetation and soil properties in SSiB. COLA Tech. Rep. 78, 25 pp. [Available from Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

    • Search Google Scholar
    • Export Citation
  • Druyan, L. M., M. Fulakeza, and L. Patric, 2002: Dynamic downscaling of seasonal climate predictions over Brazil. J. Climate, 15 , 84117.

    • Search Google Scholar
    • Export Citation
  • Fels, S. B., and M. D. Schwarzkopf, 1975: The simplified exchange approximation: A new method for radiative transfer calculations. J. Atmos. Sci, 32 , 22652297.

    • Search Google Scholar
    • Export Citation
  • Fennessy, M. J., and Coauthors, 1994: The simulated Indian monsoon: A GCM sensitivity study. J. Climate, 7 , 3343.

  • Harshvardhan, R. Davies, D. A. Randall, and T. G. Corsetti, 1987: A fast radiation parameterization for atmospheric circulation models. J. Geophy. Res, 92 (D1) 10091016.

    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., and H-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev, 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Jones, R. G., J. M. Murphy, and M. Noguer, 1995: Simulations of climate change over Europe using a nested regional climate model. I: Assessment of control climate, including sensitivity to location of lateral boundaries. Quart. J. Roy. Meteor. Soc, 121 , 14131449.

    • Search Google Scholar
    • Export Citation
  • Juang, H-M., and M. Kanamitsu, 1994: The NMC nested regional spectral model. Mon. Wea. Rev, 122 , 326.

  • Juang, H-M., S-Y. Hong, and M. Kanamitsu, 1997: The NCEP regional spectral model: An update. Bull. Amer. Meteor. Soc, 78 , 21252143.

  • Kiehl, J. T., J. J. Hack, G. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., Y. Fan, and E. K. Schneider, 2002: The COLA global coupled and anomaly coupled ocean–atmosphere GCM. J. Climate, 15 , 23012320.

    • Search Google Scholar
    • Export Citation
  • Kousky, V. E., and M. T. Kayano, 1994: Principal modes of outgoing longwave radiation and 250-mb circulation for the South American sector. J. Climate, 7 , 11311143.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., D. N. Chakraborty, N. Cubukcu, L. Stefanova, and T. S. V. Vijaya Kumar, 2003: A mechanism of the MJO based on interactions in the frequency domain. Quart. J. Roy. Meteor. Soc, 129 , 25592590.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc, 77 , 12751277.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., G. N. Kiladis, J. A. Marengo, T. Ambrizzi, and J. D. Glick, 1999: Submonthly convective variability over South America and the South Atlantic convergence zone. J. Climate, 12 , 18771891.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C., 2000: Introduction to VAMOS. CLIVAR Exchanges, 5 , 46.

  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid processes. Rev. Geophys. Space Phys, 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Misra, V., P. A. Dirmeyer, and B. P. Kirtman, 2002: A comparative study of two land surface schemes in regional climate integrations over South America. J. Geophys. Res.,107, 8080, doi;rc10.1029/2001JD001284.

    • Search Google Scholar
    • Export Citation
  • Misra, V., P. A. Dirmeyer, and B. P. Kirtman, 2003: Dynamic downscaling of regional climate over South America. J. Climate, 16 , 103117.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev, 120 , 9781002.

    • Search Google Scholar
    • Export Citation
  • Noguer, M., R. G. Jones, and J. Murphy, 1998: Sources of systematic errors in the climatology of a nested regional climate model (RCM) over Europe. Climate Dyn, 14 , 691712.

    • Search Google Scholar
    • Export Citation
  • Paegle, J. N., and K. C. Mo, 1997: Alternationg wet and dry conditions over South America during summer. Mon. Wea. Rev, 125 , 279291.

  • Paegle, J. N., L. A. Byerle, and K. C. Mo, 2000: Intraseasonal modulation of South American summer precipitation. Mon. Wea. Rev, 128 , 837850.

    • Search Google Scholar
    • Export Citation
  • Pan, H-L., and W-S. Wu, 1995: Implementing a mass flux convective parameterization package for the NMC medium-range forecast model. NMC Office Note 409, 40 pp. [Available from NOAA/ NWS/NCEP, Environmental Modeling Center, WWB, Room 207, Washington, DC 20233.].

    • Search Google Scholar
    • Export Citation
  • Pan, Z., J. H. Christensen, R. W. Arritt, W. J. Gutowski, E. S. Takle, and F. Otieno, 2001: Evaluation of uncertainties in regional climate change simulations. J. Geophys. Res, 106 , 1773517752.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., and P. H. Stone, 1996: A case study of the adequacy of GCM simulations for input to regional climate change assessments. J. Climate, 9 , 14411467.

    • Search Google Scholar
    • Export Citation
  • Roads, J. O., and S-C. Chen, 2000: Surface water and energy budgets in the NCEP regional spectral model. J. Geophys. Res, 105 , 2953929550.

    • Search Google Scholar
    • Export Citation
  • Roads, J. O., S-C. Chen, and M. Kanamitsu, 2003: U.S. regional climate simulations and seasonal forecasts. J. Geophys. Res.,108, 8606, doi:10.1029/2002JO002232.

    • Search Google Scholar
    • Export Citation
  • Takle, E. S., and Coauthors, 1999: Project to intercompare regional climate simulation (PIRCS): Description and initial results. J. Geophys. Res, 104 , 1944319461.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1984: The effect of penetrative cumulus convection on the large-scale flow in a general circulation model. Beitr. Phys. Atmos, 57 , 216239.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. Arkin, 1996: Analyses of global monthly precipitation using guage observations, satellite estimates, and numerical model predictions. J. Climate, 9 , 840858.

    • Search Google Scholar
    • Export Citation
  • Xue, Y-K., P. J. Sellers, J. L. Kinter, and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4 , 345364.

    • Search Google Scholar
    • Export Citation
  • Xue, Y-K., F. J. Zeng, and C. A. Schlosser, 1996: SSiB and its sensitivity to soil properties: A case study using HAPEX-Mobilhy data. Global Planet. Change, 13 , 183194.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 307 69 6
PDF Downloads 108 37 5