• Aceituno, P., 1988: On the functioning of the Southern Oscillation in the South American sector. Part I: Surface climate. Mon. Wea. Rev, 116 , 505524.

    • Search Google Scholar
    • Export Citation
  • Aceituno, P., and A. Montecinos, 1993: Circulation anomalies associated with dry and wet periods in the South American Altiplano. Preprints, Fourth Int. Conf. on Southern Hemisphere Meteorology and Oceanography, Hobart, Tasmania, Australia, Amer. Meteor. Soc., 330–331.

    • Search Google Scholar
    • Export Citation
  • Aceituno, P., and A. Montecinos, 1997: Meteorological field experiments in the South American Altiplano. Preprints, Fifth Int. Conf. on Southern Hemisphere Meteorology and Oceanography, Pretoria, South Africa, Amer. Meteor. Soc., 330–331.

    • Search Google Scholar
    • Export Citation
  • Aceituno, P., and A. Montecinos, 2000: Diurnal cycle over the South American Altiplano: Comparison of NCEP/NCAR reanalysis with upper-air observations during the Visviri field experiment. Preprints, Sixth Int. Conf. on Southern Hemisphere Meteorology and Oceanography, Santiago, Chile, Amer. Meteor. Soc., 412–413.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., G. J. Huffman, D. T. Bolvin, S. Curtis, and E. J. Nelkin, 2000: Tropical rainfall distributions determined using TRMM combined with other satellite and rain gauge information. J. Appl. Meteor, 39 , 20072023.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and B. N. Meisner, 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–84. Mon. Wea. Rev, 115 , 5174.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and P. Xie, 1994: The Global Precipitation Climatology Project: First algorithm intercomparison project. Bull. Amer. Meteor. Soc, 75 , 401420.

    • Search Google Scholar
    • Export Citation
  • Arnaud, Y., F. Muller, M. Vuille, and P. Ribstein, 2001: El Niño– Southern Oscillation (ENSO) influence on a Sajama volcano glacier from 1963 to 1998 as seen from Landsat data and aerial photography. J. Geophys. Res, 106 , 1777317784.

    • Search Google Scholar
    • Export Citation
  • Baker, P. A., and Coauthors, 2001: The history of South American tropical precipitation for the past 25,000 years. Science, 291 , 640643.

    • Search Google Scholar
    • Export Citation
  • Bendix, J., S. Gaemmerler, C. Reudenbach, and A. Bendix, 2003: A case study of rainfall dynamics during El Niño/La Niña 1997/ 99 in Ecuador and surrounding areas as inferred from GOES-8 and TRMM-PR observations. Erdkunde, 57 , 8193.

    • Search Google Scholar
    • Export Citation
  • Betancourt, J. L., C. Latorre, J. A. Rech, J. Quade, and K. A. Rylander, 2000: A 22,000-yr record of monsoonal precipitation from northern Chile's Atacama desert. Science, 289 , 15421546.

    • Search Google Scholar
    • Export Citation
  • Bianchi, A. R., and C. E. Yañez, 1992: Las precipitaciones en el noroeste Argentino. Instituto Nacional de Technologia Agropecuaria. Estacion Experimental Agropecuaria, Salta, 383 pp.

    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., M. Vuille, D. R. Hardy, and L. G. Thompson, 2003: Low latitude ice cores record Pacific sea surface temperatures. Geophys. Res. Lett.,30, 1174, doi:10.1029/2002GL016546.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., M. J. Manton, P. A. Arkin, R. J. Allam, G. E. Holpin, and A. Gruber, 1996: Results from the GPCP algorithm intercomparison programme. Bull. Amer. Meteor. Soc, 77 , 28752887.

    • Search Google Scholar
    • Export Citation
  • Francou, B., M. Vuille, P. Wagnon, J. Mendoza, and J. E. Sicart, 2003: Tropical climate change recorded by a glacier in the central Andes during the last decades of the 20th century: Chacaltaya, Bolivia, 16°S. J. Geophys. Res.,108, 4154, doi:10.1029/ 2002JD002959.

    • Search Google Scholar
    • Export Citation
  • Fuenzalida, H. P., and J. Rutllant, 1987: Origen del vapor de agua que precipita en el Altiplano de Chile. Proc. Anales del II Congreso Interamericano de Meteorologia, Buenos Aires, Argentina, 6.3.1–6.3.4.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 1999: Multiscale analysis of the summertime precipitation over the central Andes. Mon. Wea. Rev, 127 , 901921.

  • Garreaud, R. D., 2000a: Intraseasonal variability of moisture and rainfall over the South American Altiplano. Mon. Wea. Rev, 128 , 33373346.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 2000b: Cold air incursions over subtropical South America: Mean structure and dynamics. Mon. Wea. Rev, 128 , 25442559.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and J. M. Wallace, 1997: The diurnal march of convective cloudiness over the Americas. Mon. Wea. Rev, 125 , 31573171.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and P. Aceituno, 2001: Interannual rainfall variability over the South American Altiplano. J. Climate, 14 , 27792789.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., M. Vuille, and A. Clement, 2003: The climate of the Altiplano: Observed current conditions and mechanisms of past changes. Palaeogeogr., Palaeoclimatol., Palaeoecol, 194 , 522.

    • Search Google Scholar
    • Export Citation
  • Grosjean, M., I. Cartajena, M. A. Geyh, and L. Nunez, 2003: From proxy data to paleoclimate interpretation: The mid-Holocene paradox of the Atacama desert, northern Chile. Palaeogeogr., Palaeoclimatol., Palaeoecol, 194 , 247258.

    • Search Google Scholar
    • Export Citation
  • Hardy, D. R., M. Vuille, C. Braun, F. Keimig, and R. S. Bradley, 1998: Annual and daily meteorological cycles at high altitude on a tropical mountain. Bull. Amer. Meteor. Soc, 79 , 18991913.

    • Search Google Scholar
    • Export Citation
  • Hardy, D. R., M. Vuille, and R. S. Bradley, 2003: Variability of snow accumulation and isotopic composition on Nevado Sajama, Bolivia. J. Geophys. Res.,108, 4693, doi:10.1029/2003JD003623.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc, 78 , 520.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., R. J. Joyce, and Y. Yarosh, 2001: A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Amer. Meteor. Soc, 82 , 205217.

    • Search Google Scholar
    • Export Citation
  • Joyce, R., and P. A. Arkin, 1997: Improved estimates of tropical and subtropical precipitation using the GOES precipitation index. J. Atmos. Oceanic Technol, 14 , 9971011.

    • Search Google Scholar
    • Export Citation
  • Joyce, R., J. Janowiak, and G. Huffman, 2001: Latitudinally and seasonally dependent zenith-angle corrections for geostationary satellite IR brightness temperatures. J. Appl. Meteor, 40 , 689703.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc, 77 , 437471.

  • Kessler, A., 1974: Atmosphärische Zirkulationsanomalien and Spiegelschwankungen des Titicacasees. Bonn. Met. Abh, 17 , 361372.

  • Kessler, A., 1981: Wasserhaushaltsschwankungen auf dem Altiplano in Abhaengigkeit von der atmosphaerischen Zirkulation. Aachener Geographische Arbeiten, 14 , 111121.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc, 82 , 247268.

    • Search Google Scholar
    • Export Citation
  • Lenters, J. D., and K. Cook, 1999: Summertime precipitation variability over South America: Role of the large-scale circulation. Mon. Wea. Rev, 127 , 409431.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc, 77 , 12751277.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., J. D. Glick, J. A. Marengo, V. E. Kousky, I. C. Wainer, and O. Massambani, 1998: A comparison of rainfall, outgoing longwave radiation, and divergence over the Amazon basin. J. Climate, 11 , 28982909.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., 1995: Interannual variability of deep convection over the tropical South American sector as deduced from ISCCP C2 data. Int. J. Climatol, 15 , 9951010.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., M. W. Douglas, and P. L. Silva Dias, 2002: The South American low-level jet east of the Andes during the 1999 LBA-TRMM and LBA-WET AMC campaign. J. Geophys. Res.,107, 8079, doi:10.1029/2001JD001188.

    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., and W. F. Krajewski, 1999: On the relationship between the GOES precipitation index and ISCCP dataset variables. J. Geophys. Res, 104 , 3146731476.

    • Search Google Scholar
    • Export Citation
  • Morrissey, M. L., and J. S. Greene, 1993: Comparison of two satellite-based rainfall algorithms using Pacific atoll raingage data. J. Appl. Meteor, 32 , 411425.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., R. F. Adler, E. J. Nelkin, and G. J. Huffman, 1994: Regional rainfall climatologies derived from Special Sensor Microwave Imager (SSM/I) data. Bull. Amer. Meteor. Soc, 75 , 11651182.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., E. N. Anagnostou, and R. F. Adler, 2000: A 10-yr climatology of Amazonian rainfall derived from passive microwave satellite observations. J. Appl. Meteor, 39 , 4256.

    • Search Google Scholar
    • Export Citation
  • Nieto Ferreira, R., T. M. Rickenbach, D. L. Herdies, and L. M. V. Carvalho, 2003: Variability of South American convective cloud systems and tropospheric circulation during January–March 1998 and 1999. Mon. Wea. Rev, 131 , 961973.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev, 110 , 699706.

    • Search Google Scholar
    • Export Citation
  • Richards, F., and P. Arkin, 1981: On the relationship between satellite-observed cloud cover and precipitation. Mon. Wea. Rev, 109 , 10811093.

    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. Int. J. Climatol, 6 , 293335.

  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc, 72 , 220.

  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc, 80 , 22612287.

  • Saulo, A. C., M. Nicolini, and S. C. Chou, 2000: Model characterization of the South American low-level flow during the 1997– 98 spring–summer season. Climate Dyn, 16 , 867881.

    • Search Google Scholar
    • Export Citation
  • Seltzer, G. O., D. T. Rodbell, and H. E. Wright, 2003: Late-quaternary paleoclimates of the southern tropical Andes and adjacent regions. Palaeogeogr., Palaeoclimatol., Palaeoecol, 194 , 13.

    • Search Google Scholar
    • Export Citation
  • Thompson, L., E. Mosley-Thompson, and B. J. Arnao, 1984: El Niño– Southern Oscillation events recorded in the stratigraphy of the tropical Quelccaya ice cap, Peru. Science, 226 , 5052.

    • Search Google Scholar
    • Export Citation
  • Thompson, L., and Coauthors, 1998: A 25,000-year tropical climate history from Bolivian ice cores. Science, 282 , 18581864.

  • Todd, M., and R. Washington, 1999: A simple method to retrieve 3-hourly estimates of global tropical and subtropical precipitation from International Satellite Cloud Climatology Program (ISCCP) D1 data. J. Atmos. Oceanic Technol, 16 , 146155.

    • Search Google Scholar
    • Export Citation
  • Vernekar, A. D., B. P. Kirtman, and M. J. Fennessy, 2003: Low-level jets and their effects on the South American summer climate as simulated by the NCEP Eta Model. J. Climate, 16 , 297311.

    • Search Google Scholar
    • Export Citation
  • Vuille, M., 1999: Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the Southern Oscillation. Int. J. Climatol, 19 , 15791600.

    • Search Google Scholar
    • Export Citation
  • Vuille, M., and C. Ammann, 1997: Regional snowfall patterns in the high arid Andes. Climatic Change, 36 , 413423.

  • Vuille, M., D. R. Hardy, C. Braun, F. Keimig, and R. S. Bradley, 1998: Atmospheric circulation anomalies associated with 1996/1997 summer precipitation events on Sajama ice cap, Bolivia. J. Geophys. Res, 103 , 1119111204.

    • Search Google Scholar
    • Export Citation
  • Vuille, M., R. S. Bradley, and F. Keimig, 2000a: Interannual climate variability in the central Andes and its relation to tropical Pacific and Atlantic forcing. J. Geophys. Res, 105 , 1244712460.

    • Search Google Scholar
    • Export Citation
  • Vuille, M., R. S. Bradley, and F. Keimig, 2000b: Climate variability in the Andes of Ecuador and its relation to tropical Pacific and Atlantic sea surface temperature anomalies. J. Climate, 13 , 25202535.

    • Search Google Scholar
    • Export Citation
  • Vuille, M., R. S. Bradley, R. Healy, M. Werner, D. R. Hardy, L. G. Thompson, and F. Keimig, 2003: Modeling δ18O in precipitation over the tropical Americas: 2. Simulation of the stable isotope signal in Andean ice cores. J. Geophys. Res.,108, 4175, doi:10.1029/2001JD002039.

    • Search Google Scholar
    • Export Citation
  • Wagnon, P., P. Ribstein, B. Francou, and J. E. Sicart, 2001: Anomalous heat and mass budget of Glaciar Zongo, Bolivia, during the 1997–98 El Niño year. J. Glaciol, 47 , 2128.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global Precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc, 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., and J. M. Wallace, 1994: The signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit. J. Climate, 7 , 17191736.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 426 144 16
PDF Downloads 262 94 13

Interannual Variability of Summertime Convective Cloudiness and Precipitation in the Central Andes Derived from ISCCP-B3 Data

Mathias VuilleClimate System Research Center, Department of Geosciences, University of Massachusetts, Amherst, Amherst, Massachusetts

Search for other papers by Mathias Vuille in
Current site
Google Scholar
PubMed
Close
and
Frank KeimigClimate System Research Center, Department of Geosciences, University of Massachusetts, Amherst, Amherst, Massachusetts

Search for other papers by Frank Keimig in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The interannual variability of austral summer [December–January–February–March (DJFM)] convective activity and precipitation in the central Andes (15°–30°S) is investigated between 1983 and 1999 based on in situ rain gauge measurements, International Satellite Cloud Climatology Project (ISCCP) reduced radiance satellite data (the B3 dataset), and National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data.

Twice-daily ISCCP-B3 calibrated infrared data, corrected for limb-darkening effects and representing equivalent blackbody temperatures Tb emitted by clouds are used to derive seasonal composites of fractional cold cloud coverage F*. Comparison of in situ rain gauge measurements with F* show a good correlation when a temperature threshold Tb = 240 K is used to derive F*. A rotated empirical orthogonal function (REOF) applied to the seasonal estimates of F* yielded three spatially separated modes of convective activity in the south, northwest, and northeast of the central Andes.

Results indicate that precipitation variability in the central Andes shows less spatial coherence than previously thought, with many years showing an antiphasing of wet/dry conditions between the northern and southern part of the study area. Regression analyses confirm the crucial role of both intensity and location of upper-air circulation anomalies with easterly wind anomalies favoring wet conditions, and westerly winds producing dry conditions. Two different forcing mechanisms are identified as main causes of upper-air zonal wind anomalies in the northern and southern part of the central Andes, respectively. Easterly wind anomalies during wet summers in the northern part are in geostrophic balance with reduced meridional baroclinicity due to low-latitude (mid-latitude) cooling (warming), consistent with earlier studies. Farther to the south, easterly wind anomalies during wet summers are the result of an upper-air anticyclonic anomaly centered over southeastern South America, leading to a relaxation of the upper-air westerly winds and episodic easterly transport of humid air toward the subtropical Andes. This pattern is similar to one of the leading modes of intraseasonal variability, related to extratropical Rossby wave dispersion and modulation of the position of the Bolivian high.

Correlation analysis of F* with near-surface specific humidity reveals that humidity variations in the lowlands to the east are not relevant on interannual time scales for the more humid northern part of the Altiplano. In the southern Altiplano, however, there is a significant correlation between convective activity and precipitation at high elevation and the low-level humidity content to the southeast of the Andes.

Corresponding author address: Dr. Mathias Vuille, Climate System Research Center, Dept. of Geosciences, University of Massachusetts, Amherst, 611 North Pleasant Street, Amherst, MA 01003. Email: mathias@geo.umass.edu

Abstract

The interannual variability of austral summer [December–January–February–March (DJFM)] convective activity and precipitation in the central Andes (15°–30°S) is investigated between 1983 and 1999 based on in situ rain gauge measurements, International Satellite Cloud Climatology Project (ISCCP) reduced radiance satellite data (the B3 dataset), and National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data.

Twice-daily ISCCP-B3 calibrated infrared data, corrected for limb-darkening effects and representing equivalent blackbody temperatures Tb emitted by clouds are used to derive seasonal composites of fractional cold cloud coverage F*. Comparison of in situ rain gauge measurements with F* show a good correlation when a temperature threshold Tb = 240 K is used to derive F*. A rotated empirical orthogonal function (REOF) applied to the seasonal estimates of F* yielded three spatially separated modes of convective activity in the south, northwest, and northeast of the central Andes.

Results indicate that precipitation variability in the central Andes shows less spatial coherence than previously thought, with many years showing an antiphasing of wet/dry conditions between the northern and southern part of the study area. Regression analyses confirm the crucial role of both intensity and location of upper-air circulation anomalies with easterly wind anomalies favoring wet conditions, and westerly winds producing dry conditions. Two different forcing mechanisms are identified as main causes of upper-air zonal wind anomalies in the northern and southern part of the central Andes, respectively. Easterly wind anomalies during wet summers in the northern part are in geostrophic balance with reduced meridional baroclinicity due to low-latitude (mid-latitude) cooling (warming), consistent with earlier studies. Farther to the south, easterly wind anomalies during wet summers are the result of an upper-air anticyclonic anomaly centered over southeastern South America, leading to a relaxation of the upper-air westerly winds and episodic easterly transport of humid air toward the subtropical Andes. This pattern is similar to one of the leading modes of intraseasonal variability, related to extratropical Rossby wave dispersion and modulation of the position of the Bolivian high.

Correlation analysis of F* with near-surface specific humidity reveals that humidity variations in the lowlands to the east are not relevant on interannual time scales for the more humid northern part of the Altiplano. In the southern Altiplano, however, there is a significant correlation between convective activity and precipitation at high elevation and the low-level humidity content to the southeast of the Andes.

Corresponding author address: Dr. Mathias Vuille, Climate System Research Center, Dept. of Geosciences, University of Massachusetts, Amherst, 611 North Pleasant Street, Amherst, MA 01003. Email: mathias@geo.umass.edu

Save