• Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15 , 22052231.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J., and D. S. Battisti, 1998: The basic effects of atmosphere– ocean thermal coupling on midlatitude variability. J. Atmos. Sci, 55 , 477493.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., U. S. Bhatt, and M. A. Alexander, 1995: A modeling study of the interannual variability in the wintertime North Atlantic Ocean. J. Climate, 8 , 30673083.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., and S. E. Haupt, 1998: An empirical model of barotropic atmospheric dynamics and its response to tropical forcing. J. Climate, 11 , 26452667.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., and L. Terray, 2001: Oceanic forcing of the wintertime low-frequency atmospheric variability in the North Atlantic European sector: A study with the ARPEGE model. J. Climate, 14 , 42664291.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., L. Terray, J. W. Hurrell, and C. Deser, 2004: North Atlantic winter climate regimes: Spatial asymmetry, stationarity with time, and oceanic forcing. J. Climate, 17 , 10551068.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr, 22 , 859881.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 1999: Influence of the North Atlantic SST on the atmospheric circulation. Geophys. Res. Lett, 26 , 29692972.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15 , 606623.

    • Search Google Scholar
    • Export Citation
  • de Coëtlogon, G., and C. Frankignoul, 2003: Persistence of winter sea surface temperature in the North Atlantic. J. Climate, 16 , 13641377.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., C. Dreveton, A. Braun, and D. Cariolle, 1994: The climate version of Arpege/IFS: A contribution to the French community climate modelling. Climate Dyn, 10 , 249266.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. S. Timlin, 1997: Atmosphere–ocean interaction on weekly timescales in the North Atlantic and North Pacific. J. Climate, 10 , 393408.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 2003: On the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16 , 5772.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., M. Déqué, F. Valero, and D. B. Stephenson, 1998: North Atlantic wintertime intraseasonal variability and its sensitivity to GCM horizontal resolution. Tellus, 50A , 573595.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., M. A. Pastor, M. J. Casado, and M. Déqué, 2001: Wintertime westward-travelling planetary scale perturbations over the Euro– Atlantic region. Climate Dyn, 17 , 811824.

    • Search Google Scholar
    • Export Citation
  • Drévillon, M., L. Terray, P. Rogel, and C. Cassou, 2001: Midlatitude Atlantic SST influence on European winter climate variability in the NCEP–NCAR Reanalysis. Climate Dyn, 18 , 331344.

    • Search Google Scholar
    • Export Citation
  • Drévillon, M., C. Cassou, and L. Terray, 2003: Model study of the wintertime atmospheric response to fall tropical Atlantic SST anomalies. Quart. J. Roy. Meteor. Soc, 129 , 25912611.

    • Search Google Scholar
    • Export Citation
  • Fontaine, B., S. Janicot, and P. Roucou, 1999: Coupled ocean–atmosphere surface variability and its climate impacts in the tropical Atlantic region. Climate Dyn, 15 , 451473.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. Part II: Application to sea surface temperature variability and thermocline variability. Tellus, 29 , 284305.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., A. Czaja, and B. L'Hévéder, 1998: Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models. J. Climate, 11 , 23102324.

    • Search Google Scholar
    • Export Citation
  • Gedney, N., and P. J. Valdez, 2000: The effect of Amazonian deforestation of the Northern Hemisphere circulation and climate. Geophys. Res. Lett, 27 , 30533056.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., M. A. Cane, and Y. Kushnir, 2001: Interdecadal changes in the ENSO teleconnection to the Caribbean region and the North Atlantic Oscillation. J. Climate, 14 , 28672879.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., R. Saravanan, and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual and interdecadal time scales. Science, 302 , 10271030.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., and L. Greischar, 1993: Circulation mechanisms related to northeast Brazil rainfall anomalies. J. Geophys. Res, 98 , 50935102.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., S. W. Lyons, and S. Nigam, 1989: Transients and the extratropical response to El Niño. J. Atmos. Sci, 46 , 163174.

  • Hoerling, M. P., J. W. Hurrell, and T. Xu, 2001: Tropical origins for North Atlantic climate change. Science, 292 , 9092.

  • Hoskins, B., 1987: Diagnostics of forced and free variability in the atmosphere. Atmospheric and Oceanic Variability, H. Cattle, Ed., Royal Meteorological Society, 57–74.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., and R. Pierce, 1983: Large Scale Dynamical Processes in the Atmosphere. Academic Press, 397 pp.

  • Hoskins, B., and P. J. Valdez, 1990: On the existence of storm tracks. J. Atmos. Sci, 47 , 18541864.

  • Hoskins, B., I. James, and G. White, 1983: The shape, propagation and mean flow interaction of large scale weather systems. J. Atmos. Sci, 40 , 15951612.

    • Search Google Scholar
    • Export Citation
  • Hulme, M., and M. G. New, 1997: Dependence of large-scale precipitation climatologies on temporal and spatial sampling. J. Climate, 10 , 10991113.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 2003: An overview of the North Atlantic Oscillation. Geophys. Monogr. Series, No. 134, Amer. Geophys. Union, 1– 22.

  • Hurrell, J. W., J. J. Hack, B. A. Boville, D. L. Williamson, and J. T. Kiehl, 1998: The dynamical simulation of the NCAR Community Climate Model version 3 (CCM3). J. Climate, 11 , 12071236.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., M. P. Hoerling, A. Phillips, and T. Xu, 2004: Twentieth century North Atlantic climate change. Part I: Assessing determinism. Climate Dyn., in press.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc, 77 , 437471.

  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, 1996: Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Note NCAR TN-420+STR, 152 pp. [Available from NCAR, Boulder, CO 80307.].

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N. G. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12 , 917932.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. T. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15 , 22332256.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Coauthors, 2001: Review: North Atlantic climate variability: Phenomena, impacts and mechanisms. Int. J. Climatol, 21 , 18631898.

    • Search Google Scholar
    • Export Citation
  • Mehta, V. M., M. J. Suarez, J. V. Manganello, and T. Delworth, 2000: Oceanic influence on the North Atlantic Oscillation and associated Northern Hemisphere climate variations, 1959–1993. Geophys. Res. Lett, 27 , 121124.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., Y. Zhuang, and J. W. Wallace, 1998: Role of low clouds in summertime atmosphere–ocean interactions over the North Pacific. J. Climate, 11 , 24822490.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y., S. P. Xie, A. Numaguti, and Y. Tanimoto, 2001: Tropical Atlantic air–sea interaction and its influence on the NAO. Geophys. Res. Lett, 28 , 15071510.

    • Search Google Scholar
    • Export Citation
  • Peng, S., and J. S. Whitaker, 1999: Mechanisms determining the atmospheric response to midlatitude SST anomalies. J. Climate, 12 , 13931408.

    • Search Google Scholar
    • Export Citation
  • Peng, S., and W. A. Robinson, 2001: Relationships between atmospheric internal variability and the responses to an extratropical SST anomaly. J. Climate, 14 , 29432959.

    • Search Google Scholar
    • Export Citation
  • Peng, S., L. A. Mysak, H. Ritchie, J. Derome, and B. Dugas, 1995: The difference between early and midwinter atmospheric responses to sea surface temperature anomalies in the northwest Atlantic. J. Climate, 8 , 137157.

    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and S. Li, 2003: Mechanisms for the NAO responses to the North Atlantic SST tripole. J. Climate, 16 , 19872004.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 2000: Review of WETS—The workshop on extratropical SST anomalies. Bull. Amer. Meteor. Soc, 81 , 567577.

  • Rodwell, M. J., and C. K. Folland, 2002: Atlantic air–sea interaction and seasonal predictability. Quart. J. Roy. Meteor. Soc, 128 , 14131443.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., D. P. Rowell, and C. K. Folland, 1999: Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature, 398 , 320323.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci, 45 , 12281251.

    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., H. Wanner, S. Brnnimann, and J. Luterbacher, 2003: The history of scientific research on the North Atlantic Oscillation. Geophys. Monogr., No. 134, Amer. Geophys. Union, 37–50.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and M. R. Allen, 1997: Decadal variability of North Atlantic sea surface temperature and climate. Nature, 388 , 563567.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2003: The influence of the ocean on North Atlantic climate variability 1871–1999. J. Climate, 16 , 32693313.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., S. P. Jewson, and D. P. Rowell, 2000: The elements of climate variability in the tropical Atlantic region. J. Climate, 13 , 32613284.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., W. A. Norton, and S. P. Jewson, 2001: The North Atlantic Oscillation—What role for the ocean? Atmos. Sci. Lett, 1 , 89100.

    • Search Google Scholar
    • Export Citation
  • Terray, L., and C. Cassou, 2002: Tropical Atlantic sea surface temperature forcing of the quasi-decadal climate variability over the North Atlantic–Europe region. J. Climate, 15 , 31703187.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1986: An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen–Palm flux diagnostics. J. Atmos. Sci, 43 , 20702087.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal link between the midlatitudes and tropics. Geophys. Res. Lett, 28 , 39233926.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. Gutzler, 1981: Teleconnections in the geopotentiel fields during the Northern Hemisphere winter. Mon. Wea. Rev, 109 , 784812.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 1999: Tropical–extratropical connection in the Atlantic atmosphere ocean variability. Geophys. Res. Lett, 26 , 22472250.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 2000: Atmosphere–ocean thermal coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc, 126 , 33433369.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1982: Seasonality in the local and remote atmospheric response to sea surface temperature anomalies. J. Atmos. Sci, 39 , 722733.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., H. F. Diaz, J. D. Elms, and S. J. Worley, 1998: COADS Release 2 data and metadata enhancements for improvements of marine surface flux fields. Phys. Chem. Earth, 23 , 517527.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S., 1993: Air–sea interaction in the equatorial Atlantic region. J. Climate, 6 , 15671586.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 503 190 15
PDF Downloads 344 118 18

Summer Sea Surface Temperature Conditions in the North Atlantic and Their Impact upon the Atmospheric Circulation in Early Winter

Christophe CassouClimate Global Dynamics Division, NCAR, Boulder, Colorado, and Climate Modelling and Global Change Team, SUC, CERFACS, Toulouse, France

Search for other papers by Christophe Cassou in
Current site
Google Scholar
PubMed
Close
,
Clara DeserClimate Global Dynamics Division, NCAR, Boulder, Colorado

Search for other papers by Clara Deser in
Current site
Google Scholar
PubMed
Close
,
Laurent TerrayClimate Modelling and Global Change Team, SUC, CERFACS, Toulouse, France

Search for other papers by Laurent Terray in
Current site
Google Scholar
PubMed
Close
,
James W. HurrellClimate Global Dynamics Division, NCAR, Boulder, Colorado

Search for other papers by James W. Hurrell in
Current site
Google Scholar
PubMed
Close
, and
Marie DrévillonClimate Modelling and Global Change Team, SUC, CERFACS, Toulouse, France

Search for other papers by Marie Drévillon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The origin of the so-called summer North Atlantic “Horseshoe” (HS) sea surface temperature (SST) mode of variability, which is statistically linked to the next winter's North Atlantic Oscillation (NAO), is investigated from data and experiments with the CCM3 atmospheric general circulation model (AGCM). Lagged observational analyses reveal a linkage between HS and anomalous rainfall in the vicinity of the Atlantic intertropical convergence zone. Prescribing the observed anomalous convection in the model generates forced atmospheric Rossby waves that propagate into the North Atlantic sector. The accompanying perturbations in the surface turbulent and radiative fluxes are consistent with forcing the SST anomalies associated with HS. It is suggested that HS can therefore be interpreted as the remote footprint of tropical atmospheric changes.

The ARPEGE AGCM is then used to test if the persistence of HS SST anomalies from summer to late fall can feed back to the atmosphere and have an impact on the next winter's North Atlantic variability. Observed HS SST patterns are imposed in the model from August to November. They generate a weak but coherent early winter response projecting onto the NAO and therefore reproduce the observed HS–NAO relationship obtained from lagged statistics. Changes in the simulated upper-level jet are associated with the anomalous HS meridional SST gradient and interact with synoptic eddy activity from October onward. The strength and position of the transients as a function of seasons are hypothesized to be of central importance to explain the nature, timing, and sign of the model response.

In summary, the present study emphasizes the importance of summer oceanic and atmospheric conditions in both the Tropics and extratropics, and their persistence into early winter for explaining part of the NAO's low-frequency variability.

Corresponding author address: Dr. Christophe Cassou, CERFACS-SUC (URA 1875), Climate Modelling and Global Change Team, 42 Ave. Gustave Coriolis, 31057 Toulouse, France. Email: cassou@cerfacs.fr

Abstract

The origin of the so-called summer North Atlantic “Horseshoe” (HS) sea surface temperature (SST) mode of variability, which is statistically linked to the next winter's North Atlantic Oscillation (NAO), is investigated from data and experiments with the CCM3 atmospheric general circulation model (AGCM). Lagged observational analyses reveal a linkage between HS and anomalous rainfall in the vicinity of the Atlantic intertropical convergence zone. Prescribing the observed anomalous convection in the model generates forced atmospheric Rossby waves that propagate into the North Atlantic sector. The accompanying perturbations in the surface turbulent and radiative fluxes are consistent with forcing the SST anomalies associated with HS. It is suggested that HS can therefore be interpreted as the remote footprint of tropical atmospheric changes.

The ARPEGE AGCM is then used to test if the persistence of HS SST anomalies from summer to late fall can feed back to the atmosphere and have an impact on the next winter's North Atlantic variability. Observed HS SST patterns are imposed in the model from August to November. They generate a weak but coherent early winter response projecting onto the NAO and therefore reproduce the observed HS–NAO relationship obtained from lagged statistics. Changes in the simulated upper-level jet are associated with the anomalous HS meridional SST gradient and interact with synoptic eddy activity from October onward. The strength and position of the transients as a function of seasons are hypothesized to be of central importance to explain the nature, timing, and sign of the model response.

In summary, the present study emphasizes the importance of summer oceanic and atmospheric conditions in both the Tropics and extratropics, and their persistence into early winter for explaining part of the NAO's low-frequency variability.

Corresponding author address: Dr. Christophe Cassou, CERFACS-SUC (URA 1875), Climate Modelling and Global Change Team, 42 Ave. Gustave Coriolis, 31057 Toulouse, France. Email: cassou@cerfacs.fr

Save