Polar MM5 Simulations of the Winter Climate of the Laurentide Ice Sheet at the LGM

David H. Bromwich Polar Meteorology Group, Byrd Polar Research Center, and Atmospheric Sciences Program, Department of Geography, The Ohio State University, Columbus, Ohio

Search for other papers by David H. Bromwich in
Current site
Google Scholar
PubMed
Close
,
E. Richard Toracinta Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio

Search for other papers by E. Richard Toracinta in
Current site
Google Scholar
PubMed
Close
,
Helin Wei National Centers for Environmental Prediction, Camp Springs, Maryland

Search for other papers by Helin Wei in
Current site
Google Scholar
PubMed
Close
,
Robert J. Oglesby NASA Marshall Space Flight Center/National Space Science and Technology Center, Huntsville, Alabama

Search for other papers by Robert J. Oglesby in
Current site
Google Scholar
PubMed
Close
,
James L. Fastook Institute for Quaternary and Climate Studies, University of Maine, Orono, Maine

Search for other papers by James L. Fastook in
Current site
Google Scholar
PubMed
Close
, and
Terence J. Hughes Institute for Quaternary and Climate Studies, University of Maine, Orono, Maine

Search for other papers by Terence J. Hughes in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Optimized regional climate simulations are conducted using the Polar MM5, a version of the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5), with a 60-km horizontal resolution domain over North America during the Last Glacial Maximum (LGM, 21 000 calendar years ago), when much of the continent was covered by the Laurentide Ice Sheet (LIS). The objective is to describe the LGM annual cycle at high spatial resolution with an emphasis on the winter atmospheric circulation. Output from a tailored NCAR Community Climate Model version 3 (CCM3) simulation of the LGM climate is used to provide the initial and lateral boundary conditions for Polar MM5. LGM boundary conditions include continental ice sheets, appropriate orbital forcing, reduced CO2 concentration, paleovegetation, modified sea surface temperatures, and lowered sea level.

Polar MM5 produces a substantially different atmospheric response to the LGM boundary conditions than CCM3 and other recent GCM simulations. In particular, from November to April the upper-level flow is split around a blocking anticyclone over the LIS, with a northern branch over the Canadian Arctic and a southern branch impacting southern North America. The split flow pattern is most pronounced in January and transitions into a single, consolidated jet stream that migrates northward over the LIS during summer. Sensitivity experiments indicate that the winter split flow in Polar MM5 is primarily due to mechanical forcing by LIS, although model physics and resolution also contribute to the simulated flow configuration.

Polar MM5 LGM results are generally consistent with proxy climate estimates in the western United States, Alaska, and the Canadian Arctic and may help resolve some long-standing discrepancies between proxy data and previous simulations of the LGM climate.

Corresponding author address: Dr. David Bromwich, Byrd Polar Research Center, The Ohio State University, 1090 Carmack Road, Columbus, OH 43210-1002. Email: bromwich@polarmet1.mps.ohio-state.edu

Abstract

Optimized regional climate simulations are conducted using the Polar MM5, a version of the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5), with a 60-km horizontal resolution domain over North America during the Last Glacial Maximum (LGM, 21 000 calendar years ago), when much of the continent was covered by the Laurentide Ice Sheet (LIS). The objective is to describe the LGM annual cycle at high spatial resolution with an emphasis on the winter atmospheric circulation. Output from a tailored NCAR Community Climate Model version 3 (CCM3) simulation of the LGM climate is used to provide the initial and lateral boundary conditions for Polar MM5. LGM boundary conditions include continental ice sheets, appropriate orbital forcing, reduced CO2 concentration, paleovegetation, modified sea surface temperatures, and lowered sea level.

Polar MM5 produces a substantially different atmospheric response to the LGM boundary conditions than CCM3 and other recent GCM simulations. In particular, from November to April the upper-level flow is split around a blocking anticyclone over the LIS, with a northern branch over the Canadian Arctic and a southern branch impacting southern North America. The split flow pattern is most pronounced in January and transitions into a single, consolidated jet stream that migrates northward over the LIS during summer. Sensitivity experiments indicate that the winter split flow in Polar MM5 is primarily due to mechanical forcing by LIS, although model physics and resolution also contribute to the simulated flow configuration.

Polar MM5 LGM results are generally consistent with proxy climate estimates in the western United States, Alaska, and the Canadian Arctic and may help resolve some long-standing discrepancies between proxy data and previous simulations of the LGM climate.

Corresponding author address: Dr. David Bromwich, Byrd Polar Research Center, The Ohio State University, 1090 Carmack Road, Columbus, OH 43210-1002. Email: bromwich@polarmet1.mps.ohio-state.edu

Save
  • Ager, T. A., 2003: Late Quaternary vegetation and climate history of the central Bering land bridge from St. Michael Island, western Alaska. Quat. Res, 60 , 1932.

    • Search Google Scholar
    • Export Citation
  • Ager, T. A., and L. Brubaker, 1985: Quaternary palynology and vegetational history of Alaska. Pollen Records of Late-Quaternary North American Sediments, V. M. Bryant Jr. and R. G. Holloway, Eds., American Association of Stratigraphic Palynologists Foundation, 353–383.

    • Search Google Scholar
    • Export Citation
  • Benson, L. V., D. R. Currey, R. I. Dorn, K. R. Lajoie, C. G. Oviatt, S. W. Robinson, G. I. Smith, and S. Stine, 1990: Chronology of expansion and contraction of four Great Basin lake systems during the past 35,000 years. Palaeogeogr., Palaeoclimatol., Palaeoecol, 78 , 241286.

    • Search Google Scholar
    • Export Citation
  • Berger, A., 1977: Long-term variations of the earth's orbital elements. Celest. Mech, 15 , 5374.

  • Briner, J. P., and D. S. Kaufman, 2000: Late Pleistocene glaciation of the southwestern Ahklun Mountains, Alaska. Quat. Res, 53 , 1322.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., and S. Manabe, 1987: The influence of continental ice, atmospheric CO2, and land albedo on the climate of the last glacial maximum. Climate Dyn, 1 , 8799.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. J. Cassano, T. Klein, G. Heinemann, K. M. Hines, K. Steffen, and J. E. Box, 2001: Mesoscale modeling of katabatic winds over Greenland with the Polar MM5. Mon. Wea. Rev, 129 , 22902309.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., A. J. Monaghan, J. J. Powers, J. J. Cassano, H. Wei, Y. Kuo, and A. Pellegrini, 2003: Antarctic Mesoscale Prediction System (AMPS): A case study from the 2000/2001 field season. Mon. Wea. Rev, 131 , 412434.

    • Search Google Scholar
    • Export Citation
  • Cassano, J. J., J. E. Box, D. H. Bromwich, L. Li, and K. Steffen, 2001: Evaluation of Polar MM5 simulations of Greenland's atmospheric circulation. J. Geophys. Res, 106 , 3386733890.

    • Search Google Scholar
    • Export Citation
  • CLIMAP, 1981: Seasonal Reconstruction of the Earth's Surface at the Last Glacial Maximum. Map and Chart Series, Vol. 36, Geological Society of America, 18 pp.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and I. M. Held, 1988: Stationary waves of the ice age climate. J. Climate, 1 , 807819.

  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev, 87 , 367374.

  • Cuffey, K. M., G. D. Clow, R. B. Alley, M. Stuiver, E. D. Waddington, and R. W. Saltus, 1995: Large Arctic temperature change at the Wisconsin–Holocene glacial transition. Science, 270 , 455458.

    • Search Google Scholar
    • Export Citation
  • Dahl-Jensen, D., K. Mosegaard, N. Gundestrup, G. D. Clow, S. J. Johnsen, A. W. Hansen, and N. Balling, 1998: Past temperatures directly from the Greenland Ice Sheet. Science, 282 , 268271.

    • Search Google Scholar
    • Export Citation
  • Dong, B., and P. J. Valdes, 2000: Climates at the Last Glacial Maximum: Influence of model horizontal resolution. J. Climate, 13 , 15541573.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev, 121 , 14931513.

    • Search Google Scholar
    • Export Citation
  • Dyke, A. S., 1999: Last Glacial Maximum and deglaciation of Devon Island, Arctic Canada: Support for an Innuitian ice sheet. Quat. Sci. Rev, 18 , 393420.

    • Search Google Scholar
    • Export Citation
  • Dyke, A. S., J. T. Andrews, P. U. Clark, J. H. England, G. H. Miller, J. Shaw, and J. J. Veillette, 2002: The Laurentide and Innuitian ice sheets during the Last Glacial Maximum. Quat. Sci. Rev, 21 , 931.

    • Search Google Scholar
    • Export Citation
  • Edwards, R. L., and Coauthors, 2000: Pollen-based biomes for Beringia 18,000, 6000 and 0 14C yr BP. J. Biogeogr, 27 , 521554.

  • England, J., 1999: Coalescent Greenland and Innuitian ice during the Last Glacial Maximum: Revising the Quaternary of the Canadian High Arctic. Quat. Sci. Rev, 18 , 421456.

    • Search Google Scholar
    • Export Citation
  • Farrera, I., and Coauthors, 1999: Tropical climates at the Last Glacial Maximum: A new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake-levels, and geochemistry. Climate Dyn, 15 , 823856.

    • Search Google Scholar
    • Export Citation
  • Fastook, J. L., and J. Chapman, 1989: A map plane finite-element model: Three modeling experiments. J. Glaciol, 35 , 4852.

  • Fastook, J. L., and M. Prentice, 1994: A finite-element model of Antarctica: Sensitivity test for meteorological mass balance relationship. J. Glaciol, 40 , 167175.

    • Search Google Scholar
    • Export Citation
  • Felzer, B., R. J. Oglesby, T. I. Webb, and D. E. Hyman, 1996: Sensitivity of a general circulation model to changes in Northern Hemisphere ice sheets. J. Geophys. Res, 101 , 1907719092.

    • Search Google Scholar
    • Export Citation
  • Fortuin, I. P. F., and J. Oerlemans, 1990: Parameterization of the annual surface temperature and mass balance of Antarctica. Ann. Glaciol, 14 , 7884.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., M. R. Marinucci, and G. Visconti, 1990: Use of a limited-area model nested in a general circulation model for regional climate simulation over Europe. J. Geophys. Res, 95 , 1841318431.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State–NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 122 pp.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., D. H. Bromwich, and J. J. Cassano, 2003: Evaluation of Polar MM5 simulations of Antarctic atmospheric circulation. Mon. Wea. Rev, 131 , 384411.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., B. A. Boville, B. P. Briegleb, J. T. Kiehl, P. J. Rasch, and D. L. Williamson, 1993: Description of the NCAR community climate model (CCM2). NCAR Tech. Note NCAR/TN-382+STR, 108 pp.

    • Search Google Scholar
    • Export Citation
  • Hall, N. M., P. J. Valdes, and B. Dong, 1996: The maintenance of the last great ice sheets: A UGAMP GCM study. J. Climate, 9 , 10041019.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., D. H. Bromwich, and R. I. Cullather, 1997a: Evaluating moist physics for Antarctic mesoscale simulations. Ann. Glaciol, 25 , 282286.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., D. H. Bromwich, and Z. Liu, 1997b: Combined global climate model and mesoscale model simulations of Antarctic climate. J. Geophys. Res, 102 , 1374713760.

    • Search Google Scholar
    • Export Citation
  • Hostetler, S. W., F. Giorgi, G. T. Bates, and P. J. Bartlein, 1994: Lake– atmosphere feedbacks associated with paleolakes Bonneville and Lahontan. Science, 263 , 665668.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev, 122 , 927945.

    • Search Google Scholar
    • Export Citation
  • Ji, Y., and A. D. Vernekar, 1997: Simulation of the Asian summer monsoons of 1987 and 1988 with a regional model nested in a global GCM. J. Climate, 10 , 19651979.

    • Search Google Scholar
    • Export Citation
  • Johnsen, S. J., D. Dahl-Jensen, W. Dansgaard, and N. Gundestrup, 1995: Greenland paleotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus, 47 , 624629.

    • Search Google Scholar
    • Export Citation
  • Kageyama, M., and P. J. Valdes, 2000: Impact of the North American ice-sheet orography on the Last Glacial Maximum eddies and snowfall. Geophys. Res. Lett, 27 , 15151518.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., and H. E. Wright Jr., 1985: Simulation of the climate of 18,000 yr BP: Results for the North American/North Atlantic/ European sector. Quat. Sci. Rev, 4 , 147187.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., P. J. Guetter, P. J. Behling, and R. Selin, 1993: Simulated climatic changes: Results of the COHMAP climate-model experiments. Global Climates Since the Last Glacial Maximum, H. E. Wright Jr. et al., Eds., University of Minnesota Press, 24–93.

    • Search Google Scholar
    • Export Citation
  • Lemons, D. R., M. R. Milligan, and M. A. Chan, 1996: Paleoclimatic implications of late Pleistocene sediment yield rates for the Bonneville Basin, northern Utah. Palaeogeogr., Palaeoclimatol., Palaeoecol, 123 , 147159.

    • Search Google Scholar
    • Export Citation
  • Li, J., T. K. Lowenstein, C. B. Brown, T-L. Ku, and S. Luo, 1996: A 100 ka record of water tables and paleoclimates from salt cores, Death Valley, California. Palaeogeogr., Palaeoclimatol., Palaeoecol, 123 , 179203.

    • Search Google Scholar
    • Export Citation
  • Mahowald, N., K. Kohfeld, M. Hansson, Y. Balkanski, S. P. Harrison, I. C. Prentice, M. Schulz, and H. Rodhe, 1999: Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments. J. Geophys. Res, 104 , 1589515916.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and A. J. Broccoli, 1985: The influence of continental ice sheets on the climate of an ice age. J. Geophys. Res, 90 , 21672190.

    • Search Google Scholar
    • Export Citation
  • Manley, W. F., and D. S. Kaufman, 2002: Alaska PaleoGlacier Atlas. Institute of Arctic and Alpine Research (INSTAAR), University of Colorado. [Available online at http://instaar.colorado.edu/QGISL/ak_paleoglacier_atlas/apg_overview.html.].

    • Search Google Scholar
    • Export Citation
  • Muhs, D. R., and M. Zárate, 2001: Late Quaternary eolian records of the Americas and their paleoclimatic significance. Interhemispheric Climate Linkages, V. Markgraf, Ed., Academic Press, 183–216.

    • Search Google Scholar
    • Export Citation
  • Muhs, D. R., T. A. Ager, J. Been, J. Platt Bradbury, and W. E. Dean, 2003: A late Quaternary record of eolian silt deposition in a maar lake, St. Michael Island, western Alaska. Quat. Res, 60 , 110122.

    • Search Google Scholar
    • Export Citation
  • Pan, Z., E. Takle, W. Gutowski, and R. Turner, 1999: Long simulation of regional climate as a sequence of short segments. Mon. Wea. Rev, 127 , 308321.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., 2002: On eustatic sea level history: Last Glacial Maximum to Holocene. Quat. Sci. Rev, 21 , 377396.

  • Polyak, L., M. H. Edwards, B. J. Coakley, and M. Jakobsson, 2001: Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms. Nature, 410 , 453457.

    • Search Google Scholar
    • Export Citation
  • Powers, J. G., A. J. Monaghan, A. M. Cayette, D. H. Bromwich, Y-H. Kuo, and K. W. Manning, 2003: Real-time mesoscale modeling over Antarctica: The Antarctic Mesoscale Prediction System (AMPS). Bull. Amer. Meteor. Soc, 84 , 15331545.

    • Search Google Scholar
    • Export Citation
  • Qian, J-H., A. Seth, and S. E. Zebiak, 2003: Reinitialized versus continuous simulations for regional climate downscaling. Mon. Wea. Rev, 131 , 28572874.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc, 124 , 10711107.

    • Search Google Scholar
    • Export Citation
  • Rind, D., 1987: Components of the ice age circulation. J. Geophys. Res, 92 , 41424281.

  • Rind, D., 1988: Dependence of warm and cold climate depiction on climate model resolution. J. Climate, 1 , 965997.

  • Roe, G. H., and R. S. Lindzen, 2001: A one-dimensional model for the interaction between continental-scale ice sheets and atmospheric stationary waves. Climate Dyn, 17 , 479487.

    • Search Google Scholar
    • Export Citation
  • Serreze, M., 1995: Climatological aspects of cyclone development and decay in the Arctic. Atmos.–Ocean, 33 , 123.

  • Serreze, M., F. Carse, and R. G. Barry, 1997: Icelandic low cyclone activity: Climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation. J. Climate, 10 , 453464.

    • Search Google Scholar
    • Export Citation
  • Shinn, R. A., and E. J. Barron, 1989: Climate sensitivity to continental ice sheet size and configuration. J. Climate, 2 , 15171537.

  • Street-Perrott, F. A., D. S. Marchand, N. Roberts, and S. P. Harrison, 1989: Global lake-level variations from 18,000 to 0 years ago: A palaeoclimatic analysis. Tech. Rep., U.S. DOE/ER/60304-H1 TR046, U.S. Department of Energy, Washington, D.C., 213 pp.

    • Search Google Scholar
    • Export Citation
  • Stute, M., P. Schlosser, J. F. Clark, and W. S. Broecker, 1992: Paleotemperatures in the southwestern United States derived from noble gases in ground water. Science, 256 , 10001003.

    • Search Google Scholar
    • Export Citation
  • Stute, M., P. Schlosser, P. Schlosser, W. S. Broecker, and G. Bonani, 1995: A 30,000 yr continental paleotemperature record derived from noble gases dissolved in groundwater from the San Juan Basin, New Mexico. Quat. Res, 43 , 209220.

    • Search Google Scholar
    • Export Citation
  • Tarasov, L., and W. R. Peltier, 2004: A geophysically constrained large ensemble analysis of the deglacial history of the North American ice-sheet complex. Quat. Sci. Rev, 23 , 359388.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. S., and K. H. Anderson, 2000: Biomes of western North America at 18,000, 6000, and 0 14C yr BP reconstructed from pollen and packrat midden data. J. Biogeogr, 27 , 555584.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. S., C. Whitlock, P. J. Bartlein, S. P. Harrison, and W. G. Spaulding, 1993: Climatic changes in the western United States since 18,000 yr B.P. Global Climates Since the Last Glacial Maximum, H. E. Wright Jr. et al., Eds., University of Minnesota Press, 468–513.

    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., R. J. Oglesby, and D. H. Bromwich, 2004: Atmospheric response to modified CLIMAP ocean boundary conditions during the Last Glacial Maximum. J. Climate, 17 , 504522.

    • Search Google Scholar
    • Export Citation
  • Williams, J. W., W. I. Thompson, P. H. Richard, and P. Newby, 2000: Late Quaternary biomes of Canada and the eastern United States. J. Biogeogr, 27 , 585607.

    • Search Google Scholar
    • Export Citation
  • Yokoyama, Y., K. Lambeck, P. de Deckker, P. Johnson, and K. Fifield, 2000: Timing of the Last Glacial Maximum from observed sea-level minima. Nature, 406 , 713716.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1066 511 18
PDF Downloads 415 108 22