• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor, 4 , 11471167.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., and W. H. Lipscomb, 1999: An energy-conserving thermodynamic model of sea ice. J. Geophys. Res, 104 , 1566915677.

  • Bitz, C. M., M. M. Holland, M. Eby, and A. J. Weaver, 2001: Simulating the ice-thickness distribution in a coupled climate model. J. Geophys. Res, 106 , 24412463.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1998: The land surface climatology of the NCAR Land Surface Model coupled to the NCAR Community Climate Model. J. Climate, 11 , 13071326.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., K. W. Oleson, M. Vertenstein, and S. Levis, 2002: The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. J. Climate, 15 , 31233149.

    • Search Google Scholar
    • Export Citation
  • Boville, B. A., and P. R. Gent, 1998: The NCAR Climate System Model, version one. J. Climate, 11 , 11151130.

  • Boville, B. A., J. T. Kiehl, P. J. Rasch, and F. O. Bryan, 2001: Improvements to the NCAR CSM-1 for transient climate simulations. J. Climate, 14 , 164179.

    • Search Google Scholar
    • Export Citation
  • Branstetter, M. L., and D. J. Erickson III, 2003: Continental runoff dynamics in the Community Climate System Model (CCSM-2) control simulations. J. Geophys. Res.,108, 4550, doi.10.1029/ 2002JD003212.

    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., E. C. Hunke, C. M. Bitz, W. H. Lipscomb, M. M. Holland, J. L. Schramm, and R. E. Moritz, 2004: The sea ice simulation of the Community Climate System Model, version two. NCAR Tech. Note NCAR/TN-45+STR, 34 pp.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., 1998: Climate drift in a multicentury integration of the NCAR Climate System Model. J. Climate, 11 , 14551471.

  • Clough, S. A., F. X. Kneizys, and R. W. Davies, 1989: Line shape and the water vapor continuum. Atmos. Res, 23 , 229241.

  • Coachman, L. K., and K. Aagaard, 1988: Transports through Bering Strait: Annual and interannual variability. J. Geophys. Res, 93 , 1553515539.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., 2001: Parameterization of generalized cloud overlap for radiative calculations in general circulation models. J. Atmos. Sci, 58 , 32243242.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., J. K. Hackney, and D. P. Edwards, 2002: An updated parameterization for infrared emission and absorption by water vapor in the National Center for Atmospheric Research Community Atmosphere Model. J. Geophys. Res.,107, 4664, doi:10.1029/ 2001JD001365.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., A. Henderson-Sellers, and P. Kennedy, 1993: Biosphere–atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR community climate model. NCAR Tech. Note NCAR/TN-387+STR, Boulder, CO, 72 pp.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr, 20 , 150155.

  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr, 28 , 831841.

  • Holland, M. M., 2003: The North Atlantic Oscillation–Arctic Oscillation in the CCSM2 and its influence on Arctic climate variability. J. Climate, 16 , 27672781.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and J. K. Dukowicz, 1997: An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr, 27 , 18491867.

  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, 1996: Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Note NCAR/TN-420+STR, Boulder, CO, 152 pp.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., T. L. Schneider, R. W. Portmann, and S. Solomon, 1999: Climate forcing due to tropospheric and stratospheric ozone. J. Geophys. Res, 104 , 3123931254.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys, 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., R. Burgett, and T. P. Boyer, 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Lipscomb, W. H., 2001: Remapping the thickness distribution in sea ice models. J. Geophys. Res, 106 , 1398914000.

  • McDougall, T. J., D. R. Jackett, D. G. Wright, and R. Feistel, 2003: Accurate and computationally efficient algorithms for potential temperature and density of seawater. J. Atmos. Oceanic Technol, 20 , 730741.

    • Search Google Scholar
    • Export Citation
  • Perry, G., P. Duffy, and N. Miller, 1996: An extended data set of river discharges for validation of general circulation models. J. Geophys. Res, 101 , 2133921349.

    • Search Google Scholar
    • Export Citation
  • Randel, D. L., T. H. vonder Haar, M. A. Ringerud, G. L. Stephens, T. J. Greenwald, and C. L. Combs, 1996: A new global water vapor dataset. Bull. Amer. Meteor. Soc, 77 , 12331254.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., and J. E. Kristjansson, 1998: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J. Climate, 11 , 15871614.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev, 91 , 99164.

  • Smith, R. D., and P. R. Gent, Eds.,. cited 2002: Reference manual for the Parallel Ocean Program (POP); ocean component of the Community Climate System Model (CCSM-2). [Available online at http://www.ccsm.ucar.edu/models/ccsm2.0.1/pop/;.].

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., and J. C. McWilliams, 2003: Anisotropic horizontal viscosity for ocean models. Ocean Modell, 5 , 129156.

  • Smith, R. D., J. K. Dukowicz, and R. C. Malone, 1992: Parallel ocean general circulation modeling. Physica D, 60 , 3861.

  • Smith, R. D., M. E. Meltrud, F. O. Bryan, and M. W. Hecht, 2000: Numerical simulation of the North Atlantic Ocean at 1 10°. J. Phys. Oceanogr, 30 , 15321561.

    • Search Google Scholar
    • Export Citation
  • Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14 , 20792087.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16 , 32133226.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14 , 34333443.

  • Tsimplis, M. N., and H. L. Bryden, 2000: Estimation of transports through the Strait of Gibraltar. Deep-Sea Res, 47 , 22192242.

  • Weatherly, J. W., B. P. Briegleb, W. G. Large, and J. A. Maslanik, 1998: Sea ice and polar climate in the NCAR CCSM. J. Climate, 11 , 14721486.

    • Search Google Scholar
    • Export Citation
  • Whitworth, T., W. D. Nowlin, and S. J. Worley, 1982: The net transport of the Antarctic Circumpolar Current through Drake Passage. J. Phys. Oceanogr, 12 , 960971.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., 2001: Global vegetation root distribution for land modeling. J. Hydrometeor, 2 , 525530.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 341 123 3
PDF Downloads 141 87 3

The Community Climate System Model, Version 2

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
Restricted access

Abstract

The Community Climate System Model, version 2 (CCSM2) is briefly described. A 1000-yr control simulation of the present day climate has been completed without flux adjustments. Minor modifications were made at year 350, which included all five components using the same physical constants. There are very small trends in the upper-ocean, sea ice, atmosphere, and land fields after year 150 of the control simulation. The deep ocean has small but significant trends; however, these are not large enough that the control simulation could not be continued much further. The equilibrium climate sensitivity of CCSM2 is 2.2 K, which is slightly larger than the Climate System Model, version 1 (CSM1) value of 2.0 K.

Several aspects of the control simulation's mean climate and interannual variability are described, and good and bad properties of the control simulation are documented. In particular, several aspects of the simulation, especially in the Arctic region, are much improved over those obtained in CSM1. Other aspects, such as the tropical Pacific region simulation, have not been improved much compared to those in CSM1. Priorities for further model development are discussed in the conclusions section.

Corresponding author address: Dr. Jeffrey T. Kiehl, National Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, CO 80305. Email: jtkon@ucar.edu

Abstract

The Community Climate System Model, version 2 (CCSM2) is briefly described. A 1000-yr control simulation of the present day climate has been completed without flux adjustments. Minor modifications were made at year 350, which included all five components using the same physical constants. There are very small trends in the upper-ocean, sea ice, atmosphere, and land fields after year 150 of the control simulation. The deep ocean has small but significant trends; however, these are not large enough that the control simulation could not be continued much further. The equilibrium climate sensitivity of CCSM2 is 2.2 K, which is slightly larger than the Climate System Model, version 1 (CSM1) value of 2.0 K.

Several aspects of the control simulation's mean climate and interannual variability are described, and good and bad properties of the control simulation are documented. In particular, several aspects of the simulation, especially in the Arctic region, are much improved over those obtained in CSM1. Other aspects, such as the tropical Pacific region simulation, have not been improved much compared to those in CSM1. Priorities for further model development are discussed in the conclusions section.

Corresponding author address: Dr. Jeffrey T. Kiehl, National Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, CO 80305. Email: jtkon@ucar.edu

Save