Coupled GCM Simulation of Atmosphere–Ocean Variability Associated with Zonally Asymmetric SST Changes in the Tropical Indian Ocean

Ngar-Cheung Lau NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey

Search for other papers by Ngar-Cheung Lau in
Current site
Google Scholar
PubMed
Close
and
Mary Jo Nath NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey

Search for other papers by Mary Jo Nath in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The nature of a recurrent pattern of variability in the tropical Indian Ocean (IO) during the boreal autumn has been investigated using a 900-yr experiment with a coupled atmosphere–ocean general circulation model. This Indian Ocean Pattern (IOP) is characterized by zonal surface wind perturbations along the equator, as well as east–west contrasts in the anomalous sea surface temperature (SST), surface pressure, and precipitation fields. The IOP is seen to be linked to the El Niño–Southern Oscillation (ENSO) phenomenon in the tropical Pacific. By constructing composite charts and analyzing the heat budget for the top ocean layer, it is illustrated that the ENSO-related changes in the surface wind modify the intensity of oceanic upwelling, horizontal temperature advection, and surface heat fluxes in various parts of the IO basin. These processes lead to SST perturbations with opposite signs in the eastern and western equatorial IO.

Further diagnosis of the model output reveals that some strong IOP episodes occur even in the near absence of ENSO influences. In such IOP events that do not coincide with prominent ENSO development, the most noteworthy signal is a zonally elongated sea level pressure anomaly situated south of Australia during the southern winter. The anomalous atmospheric circulation on the equatorward flank of this feature contributes to the initiation of IOP-like events when the ENSO forcing is weak. Both simulated and observational data show that the pressure anomaly south of Australia is part of a hemisphere-wide pattern bearing a considerable resemblance to the Antarctic Oscillation. This annular mode of variability is characterized by opposite pressure changes in the midlatitude and polar zones, and is only weakly correlated with ENSO.

The findings reported here indicate that the IOP is attributable to multiple factors, including remote influences due to ENSO and extratropical changes, as well as internal air–sea feedbacks occurring within the IO basin.

Corresponding author address: Dr. Ngar-Cheung Lau, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, P.O. Box 308, Princeton, NJ 08542. Email: Gabriel.Lau@noaa.gov

Abstract

The nature of a recurrent pattern of variability in the tropical Indian Ocean (IO) during the boreal autumn has been investigated using a 900-yr experiment with a coupled atmosphere–ocean general circulation model. This Indian Ocean Pattern (IOP) is characterized by zonal surface wind perturbations along the equator, as well as east–west contrasts in the anomalous sea surface temperature (SST), surface pressure, and precipitation fields. The IOP is seen to be linked to the El Niño–Southern Oscillation (ENSO) phenomenon in the tropical Pacific. By constructing composite charts and analyzing the heat budget for the top ocean layer, it is illustrated that the ENSO-related changes in the surface wind modify the intensity of oceanic upwelling, horizontal temperature advection, and surface heat fluxes in various parts of the IO basin. These processes lead to SST perturbations with opposite signs in the eastern and western equatorial IO.

Further diagnosis of the model output reveals that some strong IOP episodes occur even in the near absence of ENSO influences. In such IOP events that do not coincide with prominent ENSO development, the most noteworthy signal is a zonally elongated sea level pressure anomaly situated south of Australia during the southern winter. The anomalous atmospheric circulation on the equatorward flank of this feature contributes to the initiation of IOP-like events when the ENSO forcing is weak. Both simulated and observational data show that the pressure anomaly south of Australia is part of a hemisphere-wide pattern bearing a considerable resemblance to the Antarctic Oscillation. This annular mode of variability is characterized by opposite pressure changes in the midlatitude and polar zones, and is only weakly correlated with ENSO.

The findings reported here indicate that the IOP is attributable to multiple factors, including remote influences due to ENSO and extratropical changes, as well as internal air–sea feedbacks occurring within the IO basin.

Corresponding author address: Dr. Ngar-Cheung Lau, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, P.O. Box 308, Princeton, NJ 08542. Email: Gabriel.Lau@noaa.gov

Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15 , 22052231.

    • Search Google Scholar
    • Export Citation
  • Allan, R. J., and Coauthors, 2001: Is there an Indian Ocean dipole, and is it independent of the El Niño-Southern Oscillation? CLIVAR Exch., 6 (3) 1822.

    • Search Google Scholar
    • Export Citation
  • Allan, R. J., C. J. C. Reason, J. A. Lindesay, and T. J. Ansell, 2003: ‘Protracted’ ENSO episodes and their impacts in the Indian Ocean region. Deep-Sea Res., 50B , 23312347.

    • Search Google Scholar
    • Export Citation
  • Baquero-Bernal, A., M. Latif, and S. Legutke, 2002: On the dipolelike variability of sea surface temperature in the tropical Indian Ocean. J. Climate, 15 , 13581368.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., and T. Yamagata, 2003: Influence of the Indian Ocean dipole on the Southern Oscillation. J. Meteor. Soc. Japan, 81 , 169177.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., P. S. Salvekar, and T. Yamagata, 1999: Unusual ocean–atmosphere conditions in the tropical Indian Ocean during 1994. Geophys. Res. Lett., 26 , 30013004.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., S. A. Rao, H. N. Saji, and T. Yamagata, 2003: Comments on “A cautionary note on the interpretation of EOFs.”. J. Climate, 16 , 10871093.

    • Search Google Scholar
    • Export Citation
  • Braak, C., 1919: Atmospheric variations of short and long duration in the Malay Archipelago and neighbouring regions, and the possibility to forecast them. Koninklijk Magnetisch en Meteorologisch Observatorium te Batavia, Indonesia, Verhandelingen No. 5, 57 pp.

    • Search Google Scholar
    • Export Citation
  • Chambers, D. P., B. D. Tapley, and R. H. Stewart, 1999: Anomalous warming in the Indian Ocean coincident with El Niño. J. Geophys. Res., 104 , 30353047.

    • Search Google Scholar
    • Export Citation
  • Curtis, S., and S. Hastenrath, 1999: Long-term trends and forcing mechanisms of circulation and climate in the equatorial Pacific. J. Climate, 12 , 11341144.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., R. J. Stouffer, K. W. Dixon, M. J. Spelman, T. R. Knutson, A. J. Broccoli, P. J. Kushner, and R. T. Wetherald, 2002: Review of simulations of climate variability and change with the GFDL R30 coupled climate model. Climate Change, 19 , 555574.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., and M. Latif, 2002: A cautionary note on the interpretation of EOFs. J. Climate, 15 , 216225.

  • Dommenget, D., and M. Latif, 2003: Reply. J. Climate, 16 , 10941097.

  • Enfield, D. B., and A. M. Mestas-Nuñez, 1999: Multiscale variabilities in global sea surface temperatures and their relationships with tropospheric climate patterns. J. Climate, 12 , 27192733.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., and N. E. Graham, 1999: Importance of the Indian Ocean for simulating rainfall anomalies over eastern and southern Africa. J. Geophys. Res., 104 , 1909919116.

    • Search Google Scholar
    • Export Citation
  • Hanley, D. E., M. A. Bourassa, J. J. O'Brien, S. R. Smith, and E. R. Spade, 2003: A quantitative evaluation of ENSO indices. J. Climate, 16 , 12281240.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 2002: Dipoles, temperature gradients, and tropical climate anomalies. Bull. Amer. Meteor. Soc., 83 , 735738.

  • Hastenrath, S., A. Nicklis, and L. Greischar, 1993: Atmospheric–hydrospheric mechanisms of climate anomalies in the western equatorial Indian Ocean. J. Geophys. Res., 98 , 2021920235.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. L. Kinter III, 2002: Interannual variability in the tropical Indian Ocean. J. Geophys. Res.,107, 3199, doi:10.1029/2001JC001278.

    • Search Google Scholar
    • Export Citation
  • Iizuka, S., T. Matsuura, and T. Yamagata, 2000: The Indian Ocean SST dipole simulated in a coupled general circulation model. Geophys. Res. Lett., 27 , 33693372.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kawamura, R., 1998: A possible mechanism of the Asian summer monsoon–ENSO coupling. J. Meteor. Soc. Japan, 76 , 10091027.

  • Klein, S. A., B. J. Soden, and N-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12 , 917932.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and S. Manabe, 1998: Model assessment of decadal variability and trends in the tropical Pacific Ocean. J. Climate, 11 , 22732296.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and B. P. Kirtman, 2003: Variability of the Indian Ocean: Relation to monsoon and ENSO. Quart. J. Roy. Meteor. Soc., 129 , 16231646.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9 , 20362057.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate, 13 , 42874309.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16 , 320.

  • Li, T., Y. Zhang, E. Lu, and D. Wang, 2002: Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: An OGCM diagnosis. Geophys. Res. Lett.,29, 2110, doi:10.1029/2002GL015789.

    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, C-P. Chang, and Y. Zhang, 2003: A theory for the Indian Ocean dipole–zonal mode. J. Atmos. Sci., 60 , 21192135.

  • Limpasuvan, V., and D. L. Hartmann, 2000: Wave-maintained annular modes of climate variability. J. Climate, 13 , 44144429.

  • Loschnigg, J., G. A. Meehl, P. J. Webster, J. M. Arblaster, and G. P. Compo, 2003: The Asian monsoon, the tropospheric biennial oscillation, and the Indian Ocean zonal mode in the NCAR CSM. J. Climate, 16 , 16171642.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and G. Meyers, 1998: Forced Rossby waves in the southern tropical Indian Ocean. J. Geophys. Res., 103 , 2758927602.

  • Meyers, G., 1996: Variation of Indonesian throughflow and the El Niño–Southern Oscillation. J. Geophys. Res., 101 , 1225512263.

  • Murtugudde, R., J. P. McCreary, and A. J. Busalacchi, 2000: Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J. Geophys. Res., 105 , 32953306.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 1995: All-India summer monsoon rainfall and sea surface temperature around northern Australia and Indonesia. J. Climate, 8 , 14631467.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R., K. Dixon, and A. Rosati, 1991: The GFDL modular ocean model users guide version 1. GFDL Ocean Group Tech. Rep. 2, 44 pp. [Available from GFDL/NOAA, Princeton University, P. O. Box 308, Princeton, NJ 08542.].

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., and G. W. Brier, 1958: Some Applications of Statistics to Meteorology. The Pennsylvania State University, 224 pp.

  • Rao, S. A., S. K. Behera, Y. Masumoto, and T. Yamagata, 2002: Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean dipole. Deep-Sea Res., 49B , 15491572.

    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., R. J. Allan, J. A. Lindesay, and T. J. Ansell, 2000: ENSO and climatic signals across the Indian Ocean Basin in the global context: Part 1, Interannual composite patterns. Int. J. Climatol., 20 , 12851327.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003: Structure of SST and surface wind variability during Indian Ocean Dipole Mode events: COADS observations. J. Climate, 16 , 27352751.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401 , 360363.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., and M. J. Suarez, 1988: Vacillations in a coupled ocean–atmosphere model. J. Atmos. Sci., 45 , 549566.

  • Shinoda, T., M. A. Alexander, and H. H. Hendon, 2004: Remote response of the Indian Ocean to interannual SST variations in the tropical Pacific. J. Climate, 17 , 362372.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1987: Interannual variability of monsoon. Monsoons, J. S. Fein and P. L. Stephens, Eds., Wiley, 399–464.

  • Smith, T. M., R. W. Reynolds, R. E. Livezey, and D. C. Stokes, 1996: Reconstruction of historical sea surface temperatures using empirical orthogonal functions. J. Climate, 9 , 14031420.

    • Search Google Scholar
    • Export Citation
  • Susanto, R. D., A. L. Gordon, and Q. Zheng, 2001: Upwelling along the coasts of Java and Sumatra and its relation to ENSO. Geophys. Res. Lett., 28 , 15991602.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13 , 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296 , 895899.

  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13 , 10181036.

    • Search Google Scholar
    • Export Citation
  • Tourre, Y. M., and W. B. White, 1995: ENSO signals in global upper-ocean temperature. J. Phys. Oceanogr., 25 , 13171332.

  • Tourre, Y. M., and W. B. White, 1997: Evolution of the ENSO signal over the Indo-Pacific domain. J. Phys. Oceanogr., 27 , 683696.

  • Tourre, Y. M., B. Rajagopalan, Y. Kushnir, M. Barlow, and W. B. White, 2001: Patterns of coherent decadal and interdecadal climate signals in the Pacific basin during the 20th century. Geophys. Res. Lett., 28 , 20692072.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2001: Indices of El Niño evolution. J. Climate, 14 , 16971701.

  • Vinayachandran, P. N., S. Iizuka, and T. Yamagata, 2002: Indian Ocean dipole mode events in an ocean general circulation model. Deep-Sea Res., 49B , 15731596.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. von Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103 , 1424114260.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on the Asian–Australian monsoon variation. J. Climate, 16 , 11951211.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., 1979: A statistical study of the relationship between ocean surface temperatures and the Indian monsoon. J. Atmos. Sci., 36 , 22792291.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401 , 356360.

    • Search Google Scholar
    • Export Citation
  • White, W. B., and R. Peterson, 1996: An Antarctic Circumpolar Wave in surface pressure, wind, temperature, and sea ice extent. Nature, 380 , 699702.

    • Search Google Scholar
    • Export Citation
  • White, W. B., and R. J. Allan, 2001: A global quasi-biennial wave in surface temperature and pressure and its decadal modulation from 1900 to 1994. J. Geophys. Res., 106 , 2678926804.

    • Search Google Scholar
    • Export Citation
  • White, W. B., S-C. Chen, R. J. Allan, and R. C. Stone, 2002: Positive feedbacks between the Antarctic Circumpolar Wave and the global El Niño–Southern Oscillation wave. J. Geophys. Res.,107, 3165, doi:10.1029/2000JC000581.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1973: An equatorial jet in the Indian Ocean. Science, 181 , 262264.

  • Xie, S-P., H. Annamalai, F. A. Schott, and J. P. McCreary, 2002: Structure and mechanisms of South Indian Ocean climate variability. J. Climate, 15 , 864878.

    • Search Google Scholar
    • Export Citation
  • Yamagata, T., S. K. Behera, S. A. Rao, Z. Guan, K. Ashok, and H. N. Saji, 2002: The Indian Ocean dipole: A physical entity. CLIVAR Exch., 7 (2) 1518.

    • Search Google Scholar
    • Export Citation
  • Yu, L-S., and M. M. Reinecker, 1999: Mechanisms for the Indian Ocean warming during the 1997–98 El Niño. Geophys. Res. Lett., 26 , 735738.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 686 229 12
PDF Downloads 306 83 7