• Albrecht, B. A., 1998: Observations of cloudy boundary layers. Clear and Cloudy Boundary Layers, A. A. M. Holtslag and P. G. Duynkerke, Eds., Royal Netherlands Academy of Arts and Sciences, 179–198.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 2000: A personal perspective of the early years of general circulation modeling at UCLA. General Circulation Model Development: Past, Present, and Future. Proceedings of a Symposium in Honor of Professor Akio Arakawa, D. A. Randall, Ed., Academic Press, 1–65.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Arola, A., 1999: Parameterization of turbulent and mesoscale fluxes for heterogeneous surfaces. J. Atmos. Sci., 56 , 584598.

  • Banta, R. M., 1990: The role of mountain flows in making clouds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 23, Amer. Meteor. Soc., 229–282.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part I: Methodology and homogeneous biases. J. Atmos. Sci., 53 , 22892303.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., , B. A. Wielicki, , and L. Parker, 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part II: Validation using satellite data. J. Atmos. Sci., 53 , 23042316.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., , G. L. Stephens, , and Q. Fu, 1999: The sensitivity of domain-averaged solar fluxes to assumptions about cloud geometry. Quart. J. Roy. Meteor. Soc., 125 , 21272152.

    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., , W. Ridgway, , W. J. Wiscombe, , T. L. Bell, , and J. B. Snider, 1994a: The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51 , 24342455.

    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., , W. Ridgway, , W. J. Wiscombe, , S. Gollmer, , and Harshvardhan, 1994b: Independent pixel and Monte Carlo estimates of stratocumulus albedo. J. Atmos. Sci., 51 , 37763790.

    • Search Google Scholar
    • Export Citation
  • Cheng, M-D., , and A. Arakawa, 1997: Inclusion of rainwater budget and convective downdrafts in the Arakawa–Shubert cumulus parameterization. J. Atmos. Sci., 54 , 13591378.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., , and R. A. Pielke, 1995: Human Impacts on Weather and Climate. Cambridge University Press, 288 pp.

  • Deardorff, J. W., 1972: Parameterization of the planetary boundary layer for use in general circulation models. Mon. Wea. Rev., 100 , 93106.

    • Search Google Scholar
    • Export Citation
  • Gudgel, R. G., , A. Rosati, , and C. T. Gordon, 2001: The sensitivity of a coupled atmospheric–oceanic GCM to prescribed low-level clouds over the ocean and tropical landmasses. Mon. Wea. Rev., 129 , 21032115.

    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., , S. G. Warren, , and J. London, 1996: Edited synoptic cloud reports from ships and land stations over the globe, 1982–1991. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory Tech. Rep. NDP026B, 45 pp. [Available online at http://cdiac.esd.ornl.gov.].

    • Search Google Scholar
    • Export Citation
  • Harshvardhan, R. Davis, , D. A. Randall, , and T. G. Corsetti, 1987: A fast radiation parameterization for atmospheric circulation models. J. Geophys. Res., 92 , 10091016.

    • Search Google Scholar
    • Export Citation
  • Harshvardhan, R. Davis, , D. A. Randall, , T. G. Corsetti, , and D. A. Dazlich, 1989: Earth radiation budget and cloudiness simulations with a general circulation model. J. Atmos. Sci., 46 , 19221942.

    • Search Google Scholar
    • Export Citation
  • Hingett, P., 1991: Observations of diurnal variation in a cloud-capped marine boundary layer. J. Atmos. Sci., 48 , 14741482.

  • Hubbe, J. M., , J. C. Doran, , J. C. Liljegren, , and W. J. Shaw, 1997: Observations of spatial variations of boundary layer structure over the southern Great Plains cloud and radiation testbed. J. Appl. Meteor., 36 , 12211231.

    • Search Google Scholar
    • Export Citation
  • Karl, T. T., and Coauthors, 1993: A new perspective on recent global warming: Asymmetric trends of daily maximum and minimum temperature. Bull. Amer. Meteor. Soc., 74 , 10071023.

    • Search Google Scholar
    • Export Citation
  • Kim, Y-J., 1996: Representation of subgrid-scale orographic effects in a general circulation model. Part I: Impact on the dynamics of simulated January climate. J. Climate, 9 , 26982717.

    • Search Google Scholar
    • Export Citation
  • Kim, Y-J., , and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52 , 18751902.

    • Search Google Scholar
    • Export Citation
  • Kogan, Z. N., , D. K. Lilly, , Y. L. Kogan, , and V. Filyushkin, 1995: Evaluation of a radiative parameterization using an explicit cloud microphysical model. Atmos. Res., 35 , 157172.

    • Search Google Scholar
    • Export Citation
  • Köhler, M., 1999: Explicit prediction of ice clouds in a general circulation model. Ph.D. thesis, University of California, Los Angeles, 167 pp.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., , and B. Albrecht, 2000: The turbulence structure in a continental srtatocumulus cloud from millimeter–wavelength radar observations. J. Atmos. Sci., 57 , 24172434.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., 1985: Numerical simulation of tropical cumulus clouds and their interaction with the subcloud layer. Ph.D. thesis, University of California, Los Angeles, 205 pp.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., 1988: Numerical simulation of tropical cumulus clouds and their interaction with the subcloud layer. J. Atmos. Sci., 45 , 22212250.

    • Search Google Scholar
    • Export Citation
  • Li, J-L. F., , C. R. Mechoso, , and A. Arakawa, 1999: Improved moist processes with the UCLA GCM. Preprints, 10th Symp. on Global Change Studies, Dallas, TX, Amer. Meteor. Soc., 423–426.

    • Search Google Scholar
    • Export Citation
  • Li, J-L. F., , M. Köhler, , J. D. Farrara, , and C. R. Mechoso, 2002: The impact of stratocumulus radiative properties on the surface heat fluxes simulated with a general circulation model. Mon. Wea. Rev., 130 , 14331441.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94 , 292309.

  • Lynn, B. H., , F. Abramopoulos, , and R. Avissar, 1995a: Using similarity theory to parameterize mesoscale heat fluxes generated by subgrid-scale landscape discontinuities in GCMs. J. Climate, 8 , 932951.

    • Search Google Scholar
    • Export Citation
  • Lynn, B. H., , D. Rind, , and R. Avissar, 1995b: The importance of mesoscale circulations generated by subgrid-scale landscape heterogeneities in general circulation models. J. Climate, 8 , 191205.

    • Search Google Scholar
    • Export Citation
  • Ma, C-C., , C. R. Mechoso, , A. W. Robertson, , and A. Arakawa, 1996: Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean–atmosphere GCM study. J. Climate, 9 , 16351645.

    • Search Google Scholar
    • Export Citation
  • Mason, J., 1982: The physics of radiation fog. J. Meteor. Soc. Japan, 60 , 486498.

  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123 , 28252838.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., , J-Y. Yu, , and A. Arakawa, 2000: A coupled GCM pilgrimage: From climate catastrophe to ENSO simulations. General Circulation Model Development: Past, Present, and Future. Proceedings of a Symposium in Honor of Professor Akio Arakawa, D. A. Randall, Ed., Academic Press, 539–575.

    • Search Google Scholar
    • Export Citation
  • Miller, M. A., , M. P. Jensen, , and E. E. Clothiaux, 1998: Diurnal cloud and thermodynamic variations in the stratocumulus transition regime: A case study using in situ and remote sensors. J. Atmos. Sci., 55 , 22942310.

    • Search Google Scholar
    • Export Citation
  • Neiburger, M., 1944: Temperature changes during formation and dissipation of West Coast stratus. J. Meteor., 1 , 2941.

  • Oreopoulos, L., , and H. W. Baker, 1999: Accounting for subgrid-scale cloud variability in a multi-layer 1D solar radiative transfer algorithm. Quart. J. Roy. Meteor. Soc., 125 , 301330.

    • Search Google Scholar
    • Export Citation
  • Price, J. D., 1999: Observations of stratocumulus cloud break-up over land. Quart. J. Roy. Meteor. Soc., 125 , 441468.

  • Randall, D. A., 1980: Conditional instability of the first kind upside-down. J. Atmos. Sci., 37 , 125130.

  • Randall, D. A., , and M. J. Suarez, 1984: On the dynamics of stratocumulus formation and dissipation. J. Atmos. Sci., 41 , 30523057.

  • Randall, D. A., , and V. Pan, 1993: Implementation of the Arakawa–Schubert cumulus parameterization with a prognostic cumulus kinetic energy. The Representation of Cumulus Convection in Numerical Models of the Atmosphere, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 137–144.

    • Search Google Scholar
    • Export Citation
  • Roach, W. T., , R. Brown, , S. J. Caughey, , B. A. Crease, , and A. Slingo, 1982: A field study of nocturnal stratocumulus. I: Mean structure and budgets. Quart. J. Roy. Meteor. Soc., 108 , 103123.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72 , 220.

  • Sassen, K., , G. G. Mace, , Z. Wang, , M. R. Poellot, , S. M. Sekelsky, , and R. E. McIntosh, 1999: Continental stratus clouds: A case study using coordinated remote sensing and aircraft measurements. J. Atmos. Sci., 56 , 23452358.

    • Search Google Scholar
    • Export Citation
  • Segal, M., , and R. W. Arritt, 1992: Nonclassical mesoscale circulations caused by surface sensible heat-flux gradients. Bull. Amer. Meteor. Soc., 73 , 15931604.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., 1990: Sensitivity of the Earth's radiation budget to changes in low clouds. Nature, 343 , 4951.

  • Stephens, G. L., 1978: Radiation profiles in extended water clouds. Part II: Parameterization schemes. J. Atmos. Sci., 35 , 21232132.

  • Stevens, B., 2002: Entrainment in stratocumulus-topped mixed layers. Quart. J. Roy. Meteor. Soc., 128 , 26232640.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Suarez, M. J., , A. Arakawa, , and D. A. Randall, 1983: The parameterization of the planetary boundary layer in the UCLA general circulation model: Formulation and results. Mon. Wea. Rev., 111 , 22242243.

    • Search Google Scholar
    • Export Citation
  • Terra, R., 2002: The impact of orographic variance on boundary layer clouds and its parameterization for climate models. Ph.D. thesis, University of California, Los Angeles, 187 pp.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., , Y. Zhang, , and W. B. Rossow, 2000: Cloud and radiation variations associated with the northern midlatitude low and high sea level pressure regimes. J. Climate, 13 , 312327.

    • Search Google Scholar
    • Export Citation
  • Vali, G., , R. D. Kelly, , A. Pazmany, , and R. E. McIntosh, 1995: Airborne radar and in-situ observations of a shallow stratus with drizzle. Atmos. Res., 38 , 361380.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., 2000: Near-global observations of low clouds. J. Climate, 13 , 12551268.

  • Xie, P., , and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9 , 840858.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., , and R. A. Pielke, 1995: Landscape-induced atmospheric flow and its parameterization in large-scale numerical models. J. Climate, 8 , 11561177.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., , and J. C. Doran, 1995: A modeling study of the effects of inhomogeneous surface fluxes in boundary-layer properties. J. Atmos. Sci., 52 , 31293142.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., , and J. C. Doran, 1997: A study of the effects of spatially varying fluxes on cloud formation and boundary-layer properties using data from the southern Great Plains cloud radiation testbed. J. Climate, 10 , 327341.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., , B. Albrecht, , and J. Gottschalck, 2001: Formation and development of nocturnal boundary layer clouds over the southern Great Plains. J. Atmos. Sci., 58 , 14091426.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 16 16 2
PDF Downloads 10 10 1

Impact of Orographically Induced Spatial Variability in PBL Stratiform Clouds on Climate Simulations

View More View Less
  • 1 Department of Atmospheric Sciences, University of California, Los Angeles, Los Angeles, California
© Get Permissions
Restricted access

Abstract

This paper examines the impact of orographically induced mesoscale heterogeneities on the macroscopic behavior of planetary boundary layer (PBL) stratiform clouds, and implements and tests a physically based parameterization of this effect in the University of California, Los Angeles (UCLA), atmospheric general circulation model (AGCM). The orographic variance and associated thermal circulations induce inhomogeneities in the cloud field that can significantly alter the PBL evolution; an effect that has been largely ignored in existing climate models. The impact of this effect on AGCM simulations is examined and the mechanisms at work are studied by analyzing a series of Cloud System Resolving Model (CSRM) simulations.

Both the CSRM and AGCM results show that, in the absence of the orographic effect, the continental PBL tends to be in one of two regimes: the solid regime characterized by a cold and overcast PBL and the broken regime characterized by a low time-mean cloud incidence and a large-amplitude diurnal cycle. Without the orographic effect, the PBL may lock in the convectively stable solid regime, with deep convection displaced to the surrounding oceans and subsidence induced over land further contributing to the persistence of the cloud deck. The inclusion of the orographic effect weakens the feedback between the cloud's albedo and the ground temperature responsible for the existence of the two regimes and, therefore, conspires against the persistence of the solid regime rendering the behavior of the PBL–ground system less bimodal. The parameterization featured in this paper also increases the amplitude of the diurnal cycle in the AGCM and reduces the excessive seasonality in PBL cloud incidence, resulting in an improved simulation of convective precipitation over regions where the solid regime was spuriously dominating.

On leave from Instituto de Mecánica de los Fluidos e Ingeniería Ambiental, Universidad de la República, Montevideo, Uruguay

Corresponding author address: Rafael Terra, IMFIA, Facultad de Ingeniería, Julio Herrera y Reissig 565, Montevideo 11300, Uruguay. Email: rterra@fing.edu.uy

Abstract

This paper examines the impact of orographically induced mesoscale heterogeneities on the macroscopic behavior of planetary boundary layer (PBL) stratiform clouds, and implements and tests a physically based parameterization of this effect in the University of California, Los Angeles (UCLA), atmospheric general circulation model (AGCM). The orographic variance and associated thermal circulations induce inhomogeneities in the cloud field that can significantly alter the PBL evolution; an effect that has been largely ignored in existing climate models. The impact of this effect on AGCM simulations is examined and the mechanisms at work are studied by analyzing a series of Cloud System Resolving Model (CSRM) simulations.

Both the CSRM and AGCM results show that, in the absence of the orographic effect, the continental PBL tends to be in one of two regimes: the solid regime characterized by a cold and overcast PBL and the broken regime characterized by a low time-mean cloud incidence and a large-amplitude diurnal cycle. Without the orographic effect, the PBL may lock in the convectively stable solid regime, with deep convection displaced to the surrounding oceans and subsidence induced over land further contributing to the persistence of the cloud deck. The inclusion of the orographic effect weakens the feedback between the cloud's albedo and the ground temperature responsible for the existence of the two regimes and, therefore, conspires against the persistence of the solid regime rendering the behavior of the PBL–ground system less bimodal. The parameterization featured in this paper also increases the amplitude of the diurnal cycle in the AGCM and reduces the excessive seasonality in PBL cloud incidence, resulting in an improved simulation of convective precipitation over regions where the solid regime was spuriously dominating.

On leave from Instituto de Mecánica de los Fluidos e Ingeniería Ambiental, Universidad de la República, Montevideo, Uruguay

Corresponding author address: Rafael Terra, IMFIA, Facultad de Ingeniería, Julio Herrera y Reissig 565, Montevideo 11300, Uruguay. Email: rterra@fing.edu.uy

Save