• Adler, R. F., , C. Kidd, , G. Petty, , M. Morissey, , and H. M. Goodman, 2001: Intercomparison of global precipitation products: The Third Precipitation Intercomparison Project (PIP-3). Bull. Amer. Meteor. Soc., 82 , 13771396.

    • Search Google Scholar
    • Export Citation
  • Alcamo, J., , T. Henrichs, , and T. Rösch, 2000: World water in 2025: Global modeling and scenario analysis. World Water Scenarios, F. R. Rijsberman, Ed., Earthscan, 204–271.

    • Search Google Scholar
    • Export Citation
  • Costa, M. H., , and J. A. Foley, 1998: A comparison of precipitation datasets for the Amazon basin. Geophys. Res. Lett., 25 , 155158.

  • CRU, cited 2000: Climate Research Unit, University of East Anglia. [Available online at http://www.cru.uea.ac.uk.].

  • FAO/UNESCO, 1986: Gridded FAO/UNESCO Soil Units. UNEP/GRID, FAO Soil Map of the World in Digital form, Digital Raster Data on 2-minute Geographic (lat × lon) 5400 × 10800 grid, UNEP/GRID, Carouge, Switzerland.

    • Search Google Scholar
    • Export Citation
  • Federer, C. A., , C. Vörösmarty, , and B. M. Fekete, 1996: Intercomparison of methods for calculating potential evaporation in regional and global water balance models. Water Resour. Res., 32 , 23152321.

    • Search Google Scholar
    • Export Citation
  • Federer, C. A., , C. Vörösmarty, , and B. M. Fekete, 2003: Sensitivity of annual evaporation to soil and root properties in two models of contrasting complexity. J. Hydrometeor., 4 , 12761290.

    • Search Google Scholar
    • Export Citation
  • Fekete, B. M., 2001: Spatial distribution of global runoff and its storage in river channels. Ph.D. thesis, University of New Hampshire, 137 pp.

    • Search Google Scholar
    • Export Citation
  • GPCC, cited 2001: Global Precipitation Climate Center. [Available online at http://www.dwd.de/research/gpcc.].

  • GPCP, cited 1998: Global Precipitation Climatology Project. [Available online at http://orbit-net.nesdis.noaa.gov/arad/gpcp.].

  • Huffman, G. J., 1997: Estimates of root-mean-square random error for finite samples of estimated precipitation. J. Appl. Meteor., 36 , 11911201.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , R. F. Adler, , B. Rudolf, , U. Schneider, , and P. R. Kehn, 1995: Global precipitation estimates based on technique for combining satellite-based estimates, raingauge analyses and NWP model information. J. Climatol., 8 , 12841295.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78 , 520.

    • Search Google Scholar
    • Export Citation
  • Hutchinson, M. F., 1995: Interpolating main rainfall using thin plate smoothing splines. Int. J. Geogr. Info. Syst., 9 , 385403.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437472.

  • Kanamitsu, M., , W. Ebisuzaki, , J. Woolen, , S-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP/NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., , and C. J. Willmott, 1990: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10 , 111127.

    • Search Google Scholar
    • Export Citation
  • Melillo, J. M., , A. D. McGuire, , D. W. Kicklighter, , B. Moore III, , C. J. Vörösmarty, , and A. L. Schloss, 1993: Global climate change and terrestrial net primary production. Nature, 363 , 234240.

    • Search Google Scholar
    • Export Citation
  • New, M., , M. Hume, , and P. Jones, 1999: Representing twentieth century space–time climate variability: I. Development of a 1961–1990 mean monthly terrestrial climatology. J. Climatol., 12 , 829856.

    • Search Google Scholar
    • Export Citation
  • New, M., , M. Hume, , and P. Jones, 2000: Representing twentieth century space–time climate variability: II. Development of 1901–1996 monthly grids of terrestrial surface. J. Climatol., 13 , 22172238.

    • Search Google Scholar
    • Export Citation
  • Oki, T., , T. Nishimura, , and P. Dirmeyer, 1999: Assessment of annual runoff from land surface models using Total Runoff Integrating Pathways (TRIP). J. Meteor. Soc. Japan, 77 , 235255.

    • Search Google Scholar
    • Export Citation
  • Oki, T., , Y. Agata, , S. Kanae, , T. Saruhashi, , D. Yang, , and K. Musiake, 2001: Global, assessment of current water resources using total runoff integrating pathways. Hydrol. Sci. J., 46 , 983996.

    • Search Google Scholar
    • Export Citation
  • Roads, J. O., 2003: The NCEP–NCAR, NCEP–DOE, and TRMM tropical atmosphere hydrologic cycles. J. Hydrometeor., 4 , 826840.

  • Roads, J. O., , S-C. Chen, , M. Kanamitsu, , and H. Juang, 1999: Surface water characteristics in the NCEP Global Spectral Model and Reanalysis. J. Geophys. Res., 104 (D16) 1930719327.

    • Search Google Scholar
    • Export Citation
  • Roads, J. O., , M. Kanamitsu, , and R. Stewart, 2002: CSE water and energy budgets in the NCEP–DOE Reanalysis II. J. Hydrometeor., 3 , 227248.

    • Search Google Scholar
    • Export Citation
  • Rudolf, B., , W. Rueth, , and U. Schneider, 1994: Terrestrial precipitation analysis: Operational method and required density of point measurements. Global Precipitation and Climate Change, M. Desbois and F. Desahmond, Eds., Springler-Verlag, 173–186.

    • Search Google Scholar
    • Export Citation
  • Shepard, D., 1968: A two-dimensional interpolation function for irregularly-spaced data. Proc. 23rd ACM National Conf., Princeton, NJ, Association for Computing Machinery, 517–523.

    • Search Google Scholar
    • Export Citation
  • Shiklomanov, A. I., , R. B. Lammers, , and C. J. Vörösmarty, 2002: Widespread decline in hydrological monitoring threatens pan-Arctic research. Eos, Trans. Amer. Geophys. Union, 83 , 1617.

    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., , and J. S. Wallace, 1985: Evaporation from sparse crops—An energy combination theory. Quart. J. Roy. Meteor. Soc., 111 , 839855.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., , P. Piraino, , L. Rokke, , L. Iredell, , and A. Mehta, 1997: Characteristics of the TOVS Pathfinder Path A dataset. Bull. Amer. Meteor. Soc., 78 , 14491472.

    • Search Google Scholar
    • Export Citation
  • Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geogr. Rev., 38 , 5594.

  • Thornthwaite, C. W., , and J. R. Mather, 1955: The water balance. Publ. Climatol., 8 , 1104.

  • Vörösmarty, C. J., , B. Moore III, , A. L. Grace, , M. Gildea, , J. M. Melillo, , B. J. Peterson, , E. B. Rastetter, , and P. A. Steudler, 1989: Continental scale models of water balance and fluvial transport: An application to South America. Global Biochem. Cycles, 3 , 241265.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., , C. J. Willmott, , B. J. Choudhury, , A. L. Schloss, , T. K. Streans, , S. M. Robeson, , and T. J. Dorman, 1996: Analyzing the discharge regime of a large tropical river through remote sensing, ground-based climatic data and modeling. Water Resour. Res., 32 , 31373150.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., , C. A. Federer, , and A. L. Schloss, 1998: Potential evaporation functions compared on U.S. watersheds: Possible implications for global-scale water balance and terrestrial ecosystem modeling. J. Hydrol., 207 , 147169.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., , P. Green, , J. Salisbury, , and R. B. Lammers, 2000: Global water resources: Vulnerability from climate change and population growth. Science, 289 , 284288.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., and Coauthors, 2002: Global water data: A newly endangered species. Eos, Trans. Amer. Geophys. Union, 82 .54, 56, 58.

    • Search Google Scholar
    • Export Citation
  • Wahba, G., 1979: How to smooth curves and surfaces with splines and cross-validation. Proc. 24th Conf. on the Design of Experiments, U.S. Army Research Office, Rep. 79-2, 167–192.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., , and S. M. Robeson, 1995: Climatologically Aided Interpolation (CAI) of terrestrial air temperature. Int. J. Climatol., 15 , 221229.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., , and K. Matsuura, cited 2001: Terrestrial air temperature and precipitation: Monthly and annual time series (1950–1999) Version 1.02. [Available online at http://climate.geog.udel.edu/climate.].

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., , C. M. Rowe, , and Y. Mintz, 1985a: Climatology of the terrestrial seasonal water cycle. J. Climatol., 5 , 589606.

  • Willmott, C. J., , C. M. Rowe, , and W. D. Philpot, 1985b: Small-scale climate maps: A sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring. Amer. Cartogr., 12 , 516.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., , S. M. Robeson, , and M. J. Janis, 1996: Comparison of approaches for estimating time-averaged precipitation using data from the USA. Int. J. Climatol., 16 , 11031115.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 290 290 33
PDF Downloads 232 232 28

Uncertainties in Precipitation and Their Impacts on Runoff Estimates

View More View Less
  • 1 Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire
  • | 2 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 3 Department of Geography, University of Delaware, Newark, Delaware
© Get Permissions
Restricted access

Abstract

Water balance calculations are becoming increasingly important for earth-system studies. Precipitation is one of the most critical input variables for such calculations because it is the immediate source of water for the land surface hydrological budget. Numerous precipitation datasets have been developed in the last two decades, but these datasets often show marked differences in their spatial and temporal distribution of this key hydrological variable. This paper compares six monthly precipitation datasets—Climate Research Unit of University of East Anglia (CRU), Willmott–Matsuura (WM), Global Precipitation Climate Center (GPCC), Global Precipitation Climatology Project (GPCP), Tropical Rainfall Measuring Mission (TRMM), and NCEP–Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP-II) Reanalysis (NCEP-2)—to assess the uncertainties in these datasets and their impact on the terrestrial water balance. The six datasets tested in the present paper were climatologically averaged and compared by calculating various statistics of the differences. The climatologically averaged monthly precipitation estimates were applied as inputs to a water balance model to estimate runoff and the uncertainties in runoff arising directly from the precipitation estimates. The results of this study highlight the need for accurate precipitation inputs for water balance calculations. These results also demonstrate the need to improve precipitation estimates in arid and semiarid regions, where slight changes in precipitation can result in dramatic changes in the runoff response due to the nonlinearity of the runoff-generation processes.

Corresponding author address: Dr. Balázs M. Fekete, Water Systems Analysis Group, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Morse Hall, Rm. 211, 39 College Road, Durham, NH 03824-3525. Email: balazs.fekete@unh.edu

Abstract

Water balance calculations are becoming increasingly important for earth-system studies. Precipitation is one of the most critical input variables for such calculations because it is the immediate source of water for the land surface hydrological budget. Numerous precipitation datasets have been developed in the last two decades, but these datasets often show marked differences in their spatial and temporal distribution of this key hydrological variable. This paper compares six monthly precipitation datasets—Climate Research Unit of University of East Anglia (CRU), Willmott–Matsuura (WM), Global Precipitation Climate Center (GPCC), Global Precipitation Climatology Project (GPCP), Tropical Rainfall Measuring Mission (TRMM), and NCEP–Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP-II) Reanalysis (NCEP-2)—to assess the uncertainties in these datasets and their impact on the terrestrial water balance. The six datasets tested in the present paper were climatologically averaged and compared by calculating various statistics of the differences. The climatologically averaged monthly precipitation estimates were applied as inputs to a water balance model to estimate runoff and the uncertainties in runoff arising directly from the precipitation estimates. The results of this study highlight the need for accurate precipitation inputs for water balance calculations. These results also demonstrate the need to improve precipitation estimates in arid and semiarid regions, where slight changes in precipitation can result in dramatic changes in the runoff response due to the nonlinearity of the runoff-generation processes.

Corresponding author address: Dr. Balázs M. Fekete, Water Systems Analysis Group, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Morse Hall, Rm. 211, 39 College Road, Durham, NH 03824-3525. Email: balazs.fekete@unh.edu

Save