Long-Term Variability in a Coupled Atmosphere–Biosphere Model

Christine Delire Center for Sustainability and the Global Environment (SAGE), Gaylord Nelson Institute for Environmental Studies, University of Wisconsin—Madison, Madison, Wisconsin, and Institut des Sciences de l'Evolution de Montpellier, Université Montpellier II, Montpellier, France

Search for other papers by Christine Delire in
Current site
Google Scholar
PubMed
Close
,
Jonathan A. Foley Center for Sustainability and the Global Environment (SAGE), Gaylord Nelson Institute for Environmental Studies, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Jonathan A. Foley in
Current site
Google Scholar
PubMed
Close
, and
Starley Thompson Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by Starley Thompson in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A fully coupled atmosphere–biosphere model, version 3 of the NCAR Community Climate Model (CCM3) and the Integrated Biosphere Simulator (IBIS), is used to illustrate how vegetation dynamics may be capable of producing long-term variability in the climate system, particularly through the hydrologic cycle and precipitation. Two simulations of the global climate are conducted with fixed climatological sea surface temperatures: one including vegetation as a dynamic boundary condition, and the other keeping vegetation cover fixed. A comparison of the precipitation power spectra over land from these two simulations shows that dynamic interactions between the atmosphere and vegetation enhance precipitation variability at time scales from a decade to a century, while damping variability at shorter time scales.

In these simulations, the two-way coupling between the atmosphere and the dynamic vegetation cover introduces persistent precipitation anomalies in several ecological transition zones: between forest and grasslands in the North American midwest, in southern Africa, and at the southern limit of the tropical forest in the Amazon basin, and between savanna and desert in the Sahel, Australia, and portions of the Arabian Peninsula. These regions contribute most to the long-term variability of the atmosphere–vegetation system.

Slow changes in the vegetation cover, resulting from a “red noise” integration of high-frequency atmospheric variability, are responsible for generating this long-term variability. Lead and lag correlation between precipitation and vegetation leaf area index (LAI) shows that LAI influences precipitation in the following years, and vice versa. A mechanism involving changes in LAI resulting in albedo, roughness, and evapotranspiration changes is proposed.

Current affiliation: Institut des Sciences de l'Evolution, Université Montpellier II, Montpellier, France

Corresponding author address: Christine Delire, Institut des Sciences de l'Evolution, CC 061, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France.Email: delire@isem.univ-montp2.fr

Abstract

A fully coupled atmosphere–biosphere model, version 3 of the NCAR Community Climate Model (CCM3) and the Integrated Biosphere Simulator (IBIS), is used to illustrate how vegetation dynamics may be capable of producing long-term variability in the climate system, particularly through the hydrologic cycle and precipitation. Two simulations of the global climate are conducted with fixed climatological sea surface temperatures: one including vegetation as a dynamic boundary condition, and the other keeping vegetation cover fixed. A comparison of the precipitation power spectra over land from these two simulations shows that dynamic interactions between the atmosphere and vegetation enhance precipitation variability at time scales from a decade to a century, while damping variability at shorter time scales.

In these simulations, the two-way coupling between the atmosphere and the dynamic vegetation cover introduces persistent precipitation anomalies in several ecological transition zones: between forest and grasslands in the North American midwest, in southern Africa, and at the southern limit of the tropical forest in the Amazon basin, and between savanna and desert in the Sahel, Australia, and portions of the Arabian Peninsula. These regions contribute most to the long-term variability of the atmosphere–vegetation system.

Slow changes in the vegetation cover, resulting from a “red noise” integration of high-frequency atmospheric variability, are responsible for generating this long-term variability. Lead and lag correlation between precipitation and vegetation leaf area index (LAI) shows that LAI influences precipitation in the following years, and vice versa. A mechanism involving changes in LAI resulting in albedo, roughness, and evapotranspiration changes is proposed.

Current affiliation: Institut des Sciences de l'Evolution, Université Montpellier II, Montpellier, France

Corresponding author address: Christine Delire, Institut des Sciences de l'Evolution, CC 061, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France.Email: delire@isem.univ-montp2.fr

Save
  • Amthor, J. S., 1984: The role of maintenance respiration in plant growth. Plant Cell Environ, 7 , 561569.

  • Barry, R. G., and A. M. Carleton, 2001: Synoptic and Dynamic Climatology. Routledge, 620 pp.

  • Bonan, G. B., 1998: The land surface climatology of the NCAR Land Surface Model coupled to the NCAR Community Climate Model. J. Climate, 11 , 13071326.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2002: Ecological Climatology, Concepts and Applications. Cambridge University Press, 678 pp.

  • Botta, A., N. Viovy, P. Ciais, P. Friedlingstein, and P. Monfray, 2000: A global prognostic scheme of leaf onset using satellite data. Global Change Biol, 6 , 709725.

    • Search Google Scholar
    • Export Citation
  • Brovkin, V., M. Claussen, V. Petoukhov, and A. Ganopolski, 1998: On the stability of the atmosphere–vegetation system in the Sahara/Sahel region. J. Geophys. Res, 103 (D24) 3161331624.

    • Search Google Scholar
    • Export Citation
  • Burroughs, W. J., 1992: Weather Cycles: Real or Imaginary? Cambridge University Press, 201 pp.

  • Claussen, M., C. Kubatzki, V. Brovkin, A. Ganopolski, P. Hoelzmann, and H. J. Pachur, 1999: Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophys. Res. Lett, 26 , 20372040.

    • Search Google Scholar
    • Export Citation
  • Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration—A model that includes a laminar boundary-layer. Agric. For. Meteor, 54 , 107136.

    • Search Google Scholar
    • Export Citation
  • Collatz, G. J., M. Ribas-Carbo, and J. A. Berry, 1992: Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust. J. Plant Physiol, 19 , 519538.

    • Search Google Scholar
    • Export Citation
  • Costa, M. H., and J. A. Foley, 1997: Water balance of the Amazon basin: Dependence on vegetation cover and canopy conductance. J. Geophys. Res, 102 (D20) 2397323989.

    • Search Google Scholar
    • Export Citation
  • Delire, C., and J. A. Foley, 1999: Evaluating the performance of a land surface/ecosystem model with biophysical measurements from contrasting environments. J. Geophys. Res, 104 (D14) 1689516909.

    • Search Google Scholar
    • Export Citation
  • Delire, C., S. L. Levis, G. Bonan, J. A. Foley, M. T. Coe, and S. Vavrus, 2002: Comparison of the climate simulated by the CCM3 coupled to two different land-surface models. Climate Dyn, 19 , 657669.

    • Search Google Scholar
    • Export Citation
  • Delire, C., J. A. Foley, and S. Thompson, 2003: Evaluating the carbon cycle of a coupled atmosphere–biosphere model. Global Biogeochem. Cycles,17, 1012, doi:10.1029/2002GB001870.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and S. Manabe, 1988: The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J. Climate, 1 , 523547.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and S. Manabe, 1989: The influence of soil wetness on near-surface atmospheric variability. J. Climate, 2 , 14471462.

    • Search Google Scholar
    • Export Citation
  • Farquhar, G. D., S. von Caemmerer, and J. A. Berry, 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149 , 7890.

    • Search Google Scholar
    • Export Citation
  • Foley, J. A., C. I. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine, 1996: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycles, 10 , 603628.

    • Search Google Scholar
    • Export Citation
  • Foley, J. A., S. Levis, I. C. Prentice, D. Pollard, and S. L. Thompson, 1998: Coupling dynamic models of climate and vegetation. Global Change Biol, 4 , 561579.

    • Search Google Scholar
    • Export Citation
  • Foley, J. A., S. Levis, M. H. Costa, W. Cramer, and D. Pollard, 2000: Incorporating dynamic vegetation cover within global climate models. Ecol. Appl, 10 , 16201632.

    • Search Google Scholar
    • Export Citation
  • Foley, J. A., M. T. Coe, M. Scheffer, and G. L. Wang, 2003: Regime shifts in the Sahara and Sahel: Interactions between ecological and climatic systems in northern Africa. Ecosystems, 6 , 524539.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., 2002: Natural climate variability. Encyclopedia of Global and Environmental Change, T. Munn, Ed., John Wiley and Sons, 544–549.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and Coauthors, 2002: Advanced spectral methods for climatic time series. Rev. Geophys.,40, 1003, doi:10.1029/ 2000RG000092.

  • Global Soil Data Task Group, 2000: Global gridded surfaces of selected soil characteristics. Internationl Geosphere–Biosphere Programme, Data and Information System CD-ROM. [Available online at http://www.daac.ornl.gov].

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models. Part I. Theory. Tellus, 28 , 473485.

  • Hastenrath, S., 1991: Climate Dynamics of the Tropics. Kluwer, 488 pp.

  • Higgins, P. A. T., M. D. Mastrandrea, and S. H. Schneider, 2002: Dynamics of climate and ecosystem coupling: Abrupt changes and multiple equilibria. Philos. Trans. Roy. Soc. London, 357 , 647655.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., C. M. Woodruff, and S. E. Mudrick, 1998: Interdecadal variations of annual precipitation in the central United States. Bull. Amer. Meteor. Soc, 79 , 221229.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., and K. R. Brye, 2003: Integrated Biosphere Simulator (IBIS) yield and nitrate loss predictions for Wisconsin maize receiving varied amounts of nitrogen fertilizer. J. Environ. Quality, 32 , 247268.

    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., and Coauthors, 2000: Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Global Biogeochem. Cycles, 14 , 795825.

    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., K. R. Brye, J. M. Norman, J. A. Foley, S. T. Gower, and L. G. Bundy, 2001: Measurements and modeling of carbon and nitrogen cycling in agroecosystems of southern Wisconsin: Potential for SOC sequestration during the next 50 years. Ecosystems, 4 , 237258.

    • Search Google Scholar
    • Export Citation
  • Lenters, J. D., M. T. Coe, and J. A. Foley, 2000: Surface water balance of the continental United States, 1963–1995: Regional evaluation of a terrestrial biosphere model and the NCEP/NCAR reanalysis. J. Geophys. Res, 105 (D17) 2239322425.

    • Search Google Scholar
    • Export Citation
  • Levis, S., J. A. Foley, V. Brovkin, and D. Pollard, 1999a: On the stability of the high-latitude climate–vegetation system in a coupled atmosphere–biosphere model. Global Ecol. Biogeogr, 8 , 489500.

    • Search Google Scholar
    • Export Citation
  • Levis, S., J. A. Foley, and D. Pollard, 1999b: CO2, climate, and vegetation feedbacks at the Last Glacial Maximum. J. Geophys. Res, 104 (D24) 3119131198.

    • Search Google Scholar
    • Export Citation
  • Levis, S., J. A. Foley, and D. Pollard, 1999c: Potential high-latitude vegetation feedbacks on CO2-induced climate change. Geophys. Res. Lett, 26 , 747750.

    • Search Google Scholar
    • Export Citation
  • Levis, S., J. A. Foley, and D. Pollard, 2000: Large-scale vegetation feedbacks on a doubled CO2 climate. J. Climate, 13 , 13131325.

  • Liu, Y. Q., and R. Avissar, 1999: A study of persistence in the land– atmosphere system using a general circulation model and observations. J. Climate, 12 , 21392153.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1996: Low-frequency variability of surface air temperature in a 1000-year integration of a coupled atmosphere–ocean–land surface model. J. Climate, 9 , 376393.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. M., 1976: An overview of climatic variability and its casual mechanisms. Quat. Res, 6 , 481493.

  • Namias, J., 1952: The annual course of month-to-month persistence in climatic anomalies. Bull. Amer. Meteor. Soc, 33 , 279285.

  • Nemani, R. R., C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J. Tucker, R. B. Myneni, and S. W. Running, 2003: Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300 , 15601563.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S., 2000: Land surface processes and Sahel climate. Rev. Geophys, 38 , 117139.

  • Ramankutty, N., and J. A. Foley, 1999: Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochem. Cycles, 13 , 9971027.

    • Search Google Scholar
    • Export Citation
  • Scheffer, M., S. Carpenter, J. A. Foley, C. Folke, and B. Walker, 2001: Catastrophic shifts in ecosystems. Nature, 413 , 591596.

  • Thompson, S. L., and D. Pollard, 1995a: A global climate model (GENESIS) with a land-surface transfer scheme (LSX). Part I: Present climate simulation. J. Climate, 8 , 732761.

    • Search Google Scholar
    • Export Citation
  • Thompson, S. L., and D. Pollard, 1995b: A global climate model (GENESIS) with a land-surface transfer scheme (LSX). Part II: CO2 sensitivity. J. Climate, 8 , 11041121.

    • Search Google Scholar
    • Export Citation
  • Wang, G., and E. A. B. Eltahir, 2000a: Biosphere–atmosphere interactions over West Africa. II: Multiple climate equilibria. Quart. J. Roy. Meteor. Soc, 126 , 12611280.

    • Search Google Scholar
    • Export Citation
  • Wang, G., and E. A. B. Eltahir, 2000b: Ecosystem dynamics and the Sahel drought. Geophys. Res. Lett, 27 , 795798.

  • Wang, G., and E. A. B. Eltahir, 2000c: Role of vegetation dynamics in enhancing the low-frequency variability of the Sahel rainfall. Water Resour. Res, 36 , 10131021.

    • Search Google Scholar
    • Export Citation
  • Wang, G., E. A. B. Eltahir, J. A. Foley, D. Pollard, and S. Levis, 2004: Decadal variability of rainfall in the Sahel: Results from the coupled GENESIS–IBIS atmosphere–biosphere model. Climate Dyn, 22, doi:10.1007/s00382-004-0411-3.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., J. D. Neelin, K. M. Lau, and C. J. Tucker, 1999: Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science, 286 , 15371540.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 499 162 50
PDF Downloads 179 38 1